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Introduction

The discipline "Design of composite materials and structures in mechanics (in English)" is offered to undergraduates under the educational program 7M05402 – Mechanics.
The purpose of studying the discipline "Design of composite materials and structures in mechanics (in English)" is to form undergraduates' knowledge about the basic principles and provisions for aligned continuous fibres, composite structures and etc., their characteristics and structure, their mechanical properties, and solving problems of mechanics for composite materials.
The course of lectures consists of an introduction, ten lectures and a list of recommended literature. 
The structure of each lecture can be described as follows. 
[bookmark: _GoBack]The lecture plan contains the main sections and points of the lecture material. 
The content of the lecture presents the main provisions, assumptions, characteristics, criteria, properties, equations of the material presented. The material of the lectures is supplemented with figures with explanations. 
To self-control the assimilation of the lecture material, undergraduates need to answer the questions given at the end of the lecture material. 
The lecture ends with a list of recommended literature. 
The list of recommended literature is given at the end of each lecture, which meets the requirements of the design of the course of lectures at the Buketov Karaganda University.
The course of lectures "Design of composite materials and structures in mechanics (in English)" involves the study of lectures by undergraduates in the following order. 
It is necessary to familiarize with the content of the lecture, then to study the presented formulas and equations in order to understand the presented lecture material. If the lecture contains examples, then you should solve them in writing. And finally you should answer the questions for self-control.
It should be borne in mind that the course of lectures is not an original scientific research, does not pretend to provide exhaustive information, but aims to give students an idea of the main content of the discipline "Design of composite materials and structures in mechanics (in English)".

Lecture 1
Lecture topic: Composite materials. Aligned Continuous Fibres. Effects of Orientation on Stiffness and on the Strength

The plan
1. A composite material and its design
1.1. What is a composite material?
1.2. Is it possible to design a composite material?
1.3. How do we get started?
2. Aligned Continuous Fibres. Woven Fibres. Fibre Packing
2.1. Aligned Continuous Fibres 
2.2. What about the stiffness perpendicular to the fibres?
2.3. Woven Fibres 
2.4. Fibre Packing
3. Strength of Fibre Composites. Continuous Fibre Composites
3.1. Strength of Fibre Composites
3.2. Matrix Fails First.
3.3. Strength of Aligned. Continuous Fibre Composites. Fibres Fail First
3.4. Transverse Strength
4. Effect of Orientation on Stiffness
5. Effect of Fibre Orientation on the Strength
5.1. Effect of Fibre Orientation on the Strength of Aligned Continuous Fibre Composites
5.2. Failure under Mutliaxial Stress States (Plane Stress)

1. A composite material and its design
1.1. What is a composite material?
A composite material is a material in which two or more distinct materials are combined together but remain uniquely identifiable in the mixture. The most common example is, perhaps, fibreglass, in which glass fibres are mixed with a polymeric resin. If one were to cut the fibreglass and, after suitable preparation of the surface, look at the material, the glass fibres and polymer resin would be easy to distinguish. This is not the same as making an alloy by mixing two distinct materials together where the individual components become indistinguishable. An example of an alloy that most people are familiar with is brass, which is made from a mixture of copper and zinc. 
After making the brass by melting the copper and zinc together and solidifying the resultant mixture, it is impossible to distinguish either between or where the atoms of copper and zinc are. There are many composite materials and while we may be aware of some, such a fibreglass and carbon epoxy, there are many others ranging from the mundane, reinforced concrete (a mixture of steel rod and concrete) (itself a composite of rock particles and cement), pneumatic tyres ( steel wires in vulcanised rubber), many cheap plastic moldings (polyurethane resin filled with ceramic particles such as chalk and talc) to the exotic metal matrix composites used in the space program (metallic titanium alloys reinforced with SiC ceramic fibres), and your automobile, such as engine pistons (aluminium alloys filled with fibrous alumina) and brake discs (aluminum alloys loaded with wear resistant SiC particles). Regardless of the actual composite, the two [or more] constituent materials that make up the composite are always readily distinguished when the material is sectioned or broken.

1.2. Is it possible to design a composite material?
Obviously the answer to that question is "Yes". 
First, we must identify the numerous materials related variables that contribute to the mechanical and physical properties of the composite material. 
Secondly, the appropriate physical and mathematical models that describe how the properties of the individual components of the composite are combined to produce the properties of the composite material itself must be derived. 
So, "Yes", it is possible to design a composite material such that it has the attributes desired for a specific application. Those attributes might be as simple has having a specified stiffness and strength, a desired thermal conductivity, or have a minimum specified stiffness at the cheapest possible cost per unit volume. Whatever the specifications it should be possible to design a suitable composite material. 
As in all design processes, it may not be possible to meet all the specifications exactly and compromise and trade offs will be required, but by understanding the physical origin of the required properties and developing an appropriate mathematical description, a suitable composite can be designed. We should also keep in mind that there may be an exisitng conventional material that is more suitable for the application than a composite. So the composite must offer a specific advantage in terms of cost or performance than conventional alternatives. It is one of the goals of this resource to show you the logical steps needed to implement the design process.

1.3. How do we get started?
Perhaps the easiest way to demonstrate how the design process required to develop a composite material is implemented is to start with a familiar composite material and examine just what factors control its properties. So I will start by asking a simple question, "How strong is a piece of fibreglass?” As you should be aware, there is no single answer to that question and one might be tempted to reply, "How strong do you want it to be?”
The amount of load that it takes to break a piece of fibre glass depends on the size of the piece of fibreglass, its thickness, width and length, whether we are simply pulling it in tension, compressing it, or bending it. It also depends on what the fibreglass is made of. There are many types of glass and many different polymeric resins that are used to make fibreglass. 
There are also many different ways in which the glass can be combined into the resin, for example, are the fibres all aligned in the same direction, are the fibres woven into a cloth, what type of cloth, are the fibres aligned at random, and are the fibres long or short? Then, if the fibres are oriented, at what angle relative to the fibres, is the fibreglass being loaded? Finally, just what is the ratio of fibres to resin and is that by volume or by weight?
By looking at the range of fibreglass products available and by seeking clarification on the structure and composition of the fibreglass we have begun to identify the micro structural variables that will control the properties of the composite. 

These may be summarized as
· The properties of the fibre reinforcement 
· The properties of the matrix in which the reinforcement is placed 
· The amount of reinforcement in the matrix. 
· The orientation of the reinforcement 
· The size and shape of the reinforcement. 

In order to get started, it is tempting to rephrase the initial question "How strong is fibreglass?" to "What is the tensile strength of fibreglass ?" thus eliminating the size and loading mode variables, or better still, "What is the tensile strength of fibreglass when all the fibres are aligned in the same direction?" Now we only need consider the mechanical properties of the glass fibres, the polymeric resin used to bind them and the relative proportions of the two. 
It would be relatively simple, having selected a resin and a fibre, to manufacture a number of flat plates of the composite with various ratios of fibre to resin, test them and produce a graph of tensile strength vs. volume fraction from which we could select a volume fraction of fibre that gives a composite with the required strength. However, if strength outside the range of measured strengths was required or other factors dictated a change in resin or fibre then the whole process would have to be repeated. While this approach does work, it rapidly becomes very time consuming and costly.
If we were to look at the various test materials that were made in the first trial and error experiments and observe the stress-strain behaviour up to the point of fracture we could infer that failure resulted from either a critical strain in the matrix or fibre being exceeded or a critical stress in either component being exceeded. We would also observe that for the most part, the composite behaved elastically almost to the point of failure, primarily because the glass fibres and the polymeric resin were both linear elastic solids with a brittle fracture mode, i.e., no plastic deformation. 
We would also note from the mechanical tests that the elastic modulus of the composite also varied with the amount of fibre added to the resin. Since we are already familiar with Hooke’s Law that defines the elastic modulus as the ratio of stress to strain, then to start answering the question "How strong is fibreglass?" we will first examine how the elastic modulus of the composite, measured parallel to the aligned fibres, varies as a function of the volume fraction of fibres.


2. Aligned Continuous Fibres. Woven Fibres. Fibre Packing
2.1. Aligned Continuous Fibres
If the composite material is to stay in equilibrium then the force we apply to the composite as a whole, F, must be balanced by an equal and opposite force in the fibre, Ff and the matrix Fm.
When considering 'Strength of Materials' problems we usually work in terms of stress () (force per unit area) rather than force itself. So the force on the fibres is simply the stress on the fibres, f, multiplied by the cross-sectional area of the fibres lying perpendicular to the stress. The cross sectional area of the composite occupied by the fibres is just f, the volume fraction of the fibres multiplied by the cross-sectional area of the composite itself - we'll call that "A" - i.e. f.A. Similarly the force on the matrix is just the stress in the matrix multiplied the cross-sectional area of the matrix in the composite, i.e. (1-f).A . Since the cross-sectional area of the composite itself, A, is in each term on both sides of the equation we can cancel it out. So the stress in the composite is just the sum of the stresses in the fibre and the matrix multiplied by their relative cross-sectional areas. 

[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_53349ac4.jpg]

[image: ]
The stress in the fibre and the stress in the matrix are not the same. Now the tricky bit.
We can now use Hooke's law, which states that the stress (or Force) experienced by a material is proportional to the strain (or deflection). This applies as long as the stresses are low (below the elastic limit - we'll come to that soon) and the material in question is linear elastic - which is true for metals, ceramics, graphite and many polymers but not so for elastomers (rubbers).
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_m300b34f5.png],
where E is the elastic modulus; the bigger these number the stiffer the material. For compatibility, the strain, , must be the same in both the fibres and the matrix otherwise holes would appear in the ends of the composite as we stretched it. This is known as the isostrain rule.
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_37cb2637.png]
Since the fibre and matrix often have quite different elastic moduli then the stress in each must be different - in fact the stress is higher in the material with the higher elastic modulus (usually the fibre). In fibreglass, the elastic modulus of the glass (~75GPa) is much greater than that of the polyester matrix (~5GPa) so as the volume fraction of fibres is increased, the elastic modulus of the composite (measured parallel to the fibres) increases linearly.
Try selecting different types of polymer matrices or different types of fibres and see how the different elastic properties change as you increase the volume fraction of fibres. The greyed areas to the right of the graph represent fibre contents which are either difficult to achieve in practice (light grey) or just plain impossible (dark grey). 
In practice it is very difficult to get more than 60% by volume of fibres which puts a practical limit on the maximum stiffness of the composite of 0.6xEf.
While the rule of mixtures has proved adequate for tensile modulus (E) in the axial direction, the isostrain rule of mixtures does not work for either the shear (G) or bulk (k) moduli. Instead, these are dependent on the phase morphology. An example of shear modulus (G) and bulk modulus (k) dependencies for an assemblage of cylindrical fibres is shown below. 
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_1b744456.png]

2.2. What about the stiffness perpendicular to the fibres?
If we were to look down on the top of the composite or along the axis of the fibres and apply a load perpendicular to the fibre axis then the composite would respond in a very different way.

[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_m12734d76.png]
In a fibrous composite with the applied stress aligned perpendicular to the fibres, the stress is transferred to the fibres through the fibre matrix interface and both the fibre and the matrix experience the same stress If the matrix and fibre have different elastic properties then each will experience a different strain and the strain in the composite will be the volume average of the strain in each material. Since the stress is the same in each phase this is known as the ISOSTRESS rule of mixtures.
If a force is applied perpendicular to the fibres then the fibres and matrix will stretch in the same direction. The total deflection (d) is just the sum of the deflections in the fibre (df) and the matrix (dm). 
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_m70330cda.png]
Again, we can use Hooke's law to introduce the elastic modulus and since the stress is the same in both the matrix and fibre we can get the elastic modulus perpendicular to the fibres
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_64af9be6.png]
Note that the stiffness of the composite, measured perpendicular to the fibres increases much more slowly than stiffness measured parallel to the fibres as the volume fraction of fibres is increased. Since the properties of the composite are different in different directions, the composite is anisotropic. Back to Calculator.
See also Calculation of Shear modulus and Poissons ratio in aligned fibre composites using the Halpi-Tsai equations. 

2.3. Woven Fibres 
The majority of structures made from composites, including sailboards, are made from woven cloth rather than the simple uni-axial fibres described above. As anyone who has pulled a piece of fibreglass cloth knows, it's very difficult to stretch (i.e. the cloth is stiff) when pulled parallel to either the warp or weft fibres (0° and 90°), but easily stretches and distorts when pulled at 45° to either fibre axis. A rigorous analysis of the stiffness of a composite made from a simple woven cloth such as that shown below, is much more complex than the two situations which I have just described and will be carried out in a later section. However, a simple approximation of the properties is as follows. For a simple plain woven (2-P) cloth it is safe to assume that half of the fibres are in the warp (0°) orientation and the other half are in the weft (90°) direction. The stiffness in each of these directions is then simply calculated using the ISOSTRAIN rule of mixtures but assuming that the volume fraction of fibres, f, is only half the total fibre content. The stiffness at 45° to the fibres can be assumed to be just that of the matrix itself. 

[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_m77c14d60.png][image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_2029883c.png]

· From the picture above you can see that each bundle of fibres, called a 'tow', consists of 100's of individual fibres each of which is about 10µm in diameter.

2.4. Fibre Packing
In all systems the equations which predict the properties of a composite breakdown at high volume fractions of reinforcement because of geometric packing limitations and the necessity for the reinforcing phase to be surrounded by the matrix in order that load can be transferred to it. There are two simple packing models which we can use to establish an upper bound for the volume fraction, a square array and a hexagonal array with circular section reinforcement.

[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_m321be7aa.png]
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_934ab87.png]

From the two figures it is readily apparent that volume fractions higher then 90% are impossible and that even 78% fibre loading would be very difficult to achieve. In practice, the maximum volume fraction is around 60% in unidirectional aligned fibre composites. In woven materials, the total volume fraction rarely exceeds 40% in a given layer of cloth and so the effective fibre fraction in either the warp or weft directions is unlikely to exceed 20% for a plain weave, satin or harness weave fabric. For loosely packed fabrics such as chopped strand mat, the total volume fractions of fibres is unlikely to exceed 10% and are normally used to provide filler layers between the outer load bearing layers in a multilayer laminate.

3. Strength of Fibre Composites. Continuous Fibre Composites
3.1. Strength of Fibre Composites
We have already seen that in a simple aligned fibre composite, loaded parallel to the fibres that both the matrix and the fibre experience the same strain (amount of stretch). It would be logical therefore to expect the composite to break at the lower of the matrix fracture strain or the fibre fracture strain. There are two cases to consider, firstly, where the matrix fails first and secondly, where the fibre fails first. The former situation is common in polymer matrix composites with low strength brittle matrices such as polyesters, epoxies or bismelamides, the latter case is observed in metal matrix composites or thermoplastic polymer composites where, because of plastic deformation in the matrix, the failure strain of the fibre is the smaller value.

3.2. Matrix Fails First
At low volume fractions of fibres, the matrix constitutes the major load bearing section and the addition of fibres gradually increases the strength as the applied load is partitioned between the fibres and the matrix. However, when the strain in the composite reaches the fracture strain of the matrix, the matrix will fail. All of the load will then transfer instantly to the fibres, which occupying such a small fraction of the sample area will see a large jump in stress and they too will fail. When the composite is deformed the elastic modulus is linear. At the strain at which the matrix is about to fracture, εm, the stress in the composite can be determined using Hookes' Law since both the fibre and the matrix are still behaving elastically, i.e.
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_e08de89.png]
The stress in the matrix, σm, is now equal to the matrix fracture stress, but the stress in the fibre is still much less that the fibre fracture stress - we know this because the stress in the fibre is simply calculated using Hookes' Law. What happens next, as the matrix breaks, depends on the mode of loading, either constant deflection (deflection rate) i.e. the end points of the composite are fixed or constant load (loading rate) where there is a dead weight hanging off the end of the composite. Ultimately, the distinction is irrelevant to the overall strength of the composite but affects the shape of the stress-strain curve. We will just consider the case of dead weight loading...
Before the matrix breaks, the load on the composite is 
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_m2195cc37.png]
After the matrix breaks only the fibres remain to carry the load and the stress in the fibre jumps by[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_m7392af94.png]. If this increase takes the stress in the fibre above its fracture strength then the fibres too will snap. This is most likely to happen when f, the volume fraction of fibres is small and when the strength of the matrix is large. This is called matrix controlled fracture. However, if the jump in stress is not sufficient to break the fibres then the load can be increased until the fibres break i.e.
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_m24e3c439.png]
This is known as fibre controlled fracture

[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_m216e3b28.png]

The graph above shows how the strength of a fibreglass composite changes as the volume fraction of fibres is increased. At the low fibre fractions, the strength is controlled by the fracture of the matrix; the strength increasing as the fibres are added.
Matrix fracture strength is ~50MPa and the failure strain is 0.010.
Fibre fracture strength is ~1200MPa and the failure strain is 0.016.
Above a fibre content of 10% the fibres begin to dominate the fracture process and while the composite can sustain high stresses, structural integrity would be lost when the matrix fractures because the composite would be full of cracks if loaded to its ultimate tensile strength. 
The effective strength of the composite is given by the (lower) matrix controlled strength. Even so, for a fibre loading of 40% the strength of the composite would be 330MPa; a very respectable 560% increase over the strength of the matrix alone.
This type of behaviour is typical of the composites used in sailboard components, such as boards, masts, fins and nowadays booms (glass-epoxy or graphite-epoxy).

3.3. Strength of Aligned. Continuous Fibre Composites. Fibres Fail First
We shall now consider the case where the matrix is ductile and the elastic strain to fracture in the fibres is less than the elastic/plastic extension of the matrix as would occur in fibre reinforced metal matrix composites or thermoplastic matrix composites. At low volume fractions of fibres, the chain of events is analogous to the case where the matrix fails first in that the fibres will break and the load will transfer to the matrix which, having a reduced cross-section, will see a sudden jump in stress. Again, what happens next depends on the magnitude of the increase in the stress in the matrix - will it fracture or won't it? The stress on the composite at the point of fibre fracture (σf) is
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_691f2ac6.png]
The force on the composite is just the product of the stress and the cross-sectional area, so the stress on the matrix after the fibres break is
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_3956100d.png]
So the stress on the matrix increases by [image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_60a7f9db.png]. If the rise in stress is not sufficient to fracture the matrix then it will continue to support the applied load. Thus the fracture strength of the composite will be given by
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_69ad96ff.png]
where σm is the ultimate tensile strength of the matrix; i.e. the addition of fibres leads to a reduction in the strength of the composite to levels below that of the unreinforced matrix. Fortunately, as the fibre volume fraction increases, the fibres carry more of the applied load. 
When the fibres break, the load transferred to the matrix is large and the much reduced cross-sectional area of the matrix will be unable to support the load and the matrix too will fail. The strength of the composite, like the previous example, is determined by the strength of the fibres i.e.
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_691f2ac6.png]

[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_2ce01631.png]

We can plainly see that the tensile strength of a composite in which the fibres fail at a lower strain that the matrix initially decreases below that of the matrix alone, reaches a minimum and thereafter increase. There is, therefore, a minimum volume fraction, fmin, of fibres that must be added in order for the composite to have a strength at least equal to that of the matrix alone, i.e.
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_219af5f5.png]
In the example shown above, where glass fibres are used to reinforce a polyAmide matrix, fmin is around 9%.
· Matrix Modulus (Em) = 5GPa; Tensile Strength (m) = 120 MPa; strain at yield = 0.024; strain at fracture (m) = 0.1. 
· matrix(f) is the stress in the matrix at the strain at which the fibres break. 
· Fibre modulus (Ef) = 75GPa; Tensile Strength (f) = 800MPa; strain at failure (f) = 0.01 
The strength is calculated at the lower strain of 
1. the fibre fractures, or 
2. the (ductile) matrix yields, or 
3. the (brittle) matrix fractures. 

3.4. Transverse Strength
So far we have only considered the strength of the composite when loaded in a direction parallel to the fibres. However, if the composite is loaded in a direction perpendicular to the fibres then a different set of rules apply - just one of the problems associated with analysing anisotropic materials.

[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_m22fc61fb.png]
· We should recall, that when loaded in the transverse direction, both the fibres and the matrix experience the same stress - so to determine what the strength is we need only look at the weakest link in the composite. Of the two materials that make up the composite, the matrix is invariably the weaker material and so fracture will occur when the stress reaches the matrix fracture stress - or will it? Up to now we have assumed that the join between the matrix and the fibre is perfect and will transmit all the load applied to it. A great deal of effort goes into the engineering of the fibre matrix interface either to make it strong or to deliberately weaken it, depending on the application. We will discuss the fibre matrix interface in a latter class but for now it is safe to assume that the interface is always the weakest link, therefore err on the safe side and set the transverse strength to some fraction of the matrix strength - the exact value can be determined most easily by experiment. 

4. Effect of Orientation on Stiffness
This means that we are now going to look at the effect of loading a composite in a direction that is neither parallel nor perpendicular to the fibres. This section is also going to be a bit heavy on the maths with Tensors and Matrix Algebra. A complete description of this next section can be found in any text on mechanics of composites . If this is somewhat daunting then it's probably best to jump right to the calculator We should be familiar with the tensor representation of the stress-strain relationships which define elastic behaviour. The stiffness matrix, Q, for plane stress is given by the matrix shown below, where  [image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_2db60d7c.png] is Poisson's ratio representing a strain in the '2' direction resulting from a load applied in the '1' direction, i.e. [image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_67cdbcbc.png]; similarly
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_7108ab09.png].
 '1' and '2' are at right angles in the eplane of the composite, '3' is perpendicular to the plane of the sheet - since there won't be any stresses applied perpendicular to the plane of the sheet we are going to ignore the '3' direction completely.
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_3b383493.png],
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_1f74d580.png]
When considering fibre reinforced composites we generally deal with thin sheets or plies. In this case plane stress is assumed and therefore there are no through thickness stresses, i.e. [image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_m11d534d0.png]. However we must remember that the composite is not isotropic and thus E11 and E22 are not the same. 
Next we shall introduce the compliance matrix S, which is the inverse of the stiffness matrix Q and enables the calculation of strain given a system of applied stresses. Note that the compliance matrix S is much simpler than the stiffness matrix Q. Both matrices are symmetrical about the diagonal.
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_m5105bd52.png]
Below we define the principal axes of the composite and the corresponding elastic constants. We defined the parallel (E11)and transverse (E22) elastic moduli in Class 1. G21 is the shear modulus and relates the shear stress to the shear strain. 

[image: ]

Next we define the rotation from the special '1-2' co-ordinate system that is aligned with the fibres to a more general 'x-y' co-ordinate system that is aligned with the direction of loading. [image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_31373c7.png] is the angle between the two. 

[image: ]
If the composite is tested at an angle [image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_31373c7.png] to the fibre orientation then the elastic properties in the general directions 'x-y' (parallel and perpendicular to the testing direction) can be determined in terms of the 'special orthotropic' properties as follows.
1. Translate the strains from the general 'x-y' orientation (the loading directions) to the orthotropic '1-2' orientation. Note that we will need to rewrite the strain tensor in terms of engineering strain not tensor strain - the engineering shear strain is 2 x the tensor shear strain. 
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_m8e6566e.png]

The matrices R (R.Tensor Strain = Engineering Strain) and T, the tensor rotation matrix are defined as 
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_mff7b2b3.png]

2. Since , we can write the orthogonal stresses in the 1-2 orientation in terms of the special orthogonal elastic properties, Q and the engineering strains in the x-y directions (parallel and perpendicular to the applied loads. 
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_7b65d405.png]
3. All that remains is to rotate the special 1-2 stress tensor into the general x-y orientation. 
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_6fde94a1.png],

[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_m4f17f820.png]

4. Now, all the matrix terms T,Q and R can be collected together in a single matrix, [image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_mfbbd653.png]which represents the elastic properties of the composite at an arbitrary angle [image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_31373c7.png]to the fibres. 
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_328d98b7.png]
So much for theory - let’s see how its works in practice.

5. Effect of Fibre Orientation on the Strength
5.1. Effect of Fibre Orientation on the Strength of Aligned Continuous Fibre Composites
When considering the effect of fibre orientation on the strength of a composite material made up of continuous aligned fibres embedded in a matrix, it should be recognized that there are 3 possible modes of failure.
1. Tensile fracture parallel to the fibres (whether the fibres fail or the matrix fails will depend on the particular combination of fibre and matrix materials as well as the volume fraction of fibres), 
2. Shear failure of the matrix as a result of a large shear stress acting parallel to the fibres , 
3. Tensile failure of the matrix or fibre/matrix interface when stressed perpendicular to the fibres. 

[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_m5335b7c.png]

We have already determined suitable expressions for the strength of a composite when tested parallel to the fibres, We'll call this strength X. We also know the tensile strength of the matrix material which we'll call Y. The shear strength of the matrix can be determined using the Tresca criteria and is simply Y/2. In order to examine the effect of orientation on strength we need to make use of Mohr's Circle to establish the state of stress aligned parallel and perpendicular to the fibres and then to equate these stresses with the appropriate failure stress of the composite in each those directions.

[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_m21ed2165.jpg]
For failure to occur, the applied stress must be increase until either
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_43831999.jpg]
These equations are plotted out below and since failure is a "weakest link" phenomenon, fracture will occur at whichever criterion is reached first and so the mechanism of failure changes from tensile failure of the fibres to shear of the matrix to tensile failure of the matrix as the fibre angle is increased from 0 to 90°.

[image: ]
5.2. Failure under Mutliaxial Stress States (Plane Stress)
When two mutually perpendicular stresses and/or a shear stress is applied to the composite we need to be able to define a failure criterion. Tsai and Hill have established a suitable fracture criteria based on maximum strain energy, rather than considering stress and strain. This maximum strain energy approach allows us to ignore the fact that failure can occur because either a stress has exceeded a critical value (e.g. the stress resolved perpendicular to the fibres has exceeded the tensile strength of the matrix) or the strain has exceeded a particular value (e.g. the strain resolved parallel to the fibres has exceeded the fibre fracture strain). The Tsai-Hill maximum strain energy formulation is:
[image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_m9f06452.jpg],
which we can see for the case of a uniaxial stress applied
· Parallel to the fibres [image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_m1631c9e4.jpg], 
· Perpendicular to the fibres [image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_28bb04fa.jpg], 
· Simple shear [image: http://www.shkola.of.by/the-design-of-composite-materials-and-structures-what-is-a-com/22560_html_m7abc5e7e.jpg] 
The strength of a fibre reinforced composite in compression is considerably lower than tension, the long thin fibres buckling easily under a compressive load - like a rope, fibres do not work well in compression. However, a particulate composite will have the same behaviour in tension as it does in compression. 
The mathematical analysis of the strength of continuous aligned fibre composites in compression is complex so if you can either 
(a) skip straight to the answer, 
(b) follow through a simplified analysis or 
(c) jump into the rigorous analysis which requires a basic understanding of the calculus of Fourier series.

Questions for self-control
1. What is a composite material?
2. What about the stiffness perpendicular to the fibres?
3. What is the strength of fibre composites?
4. How is the strength of fibre composites determined?
5. How is the effect of fibre orientation on the strength of aligned continuous fibre composites defined?
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Lecture 2
Lecture topic: Composite structures. Basic lamina properties and micromechanics

The plan
1. Composite structures
1.1. Composite structures
1.2. On the design of composite materials and structures
2. Basic lamina properties and micromechanics
2.1. Assumptions
2.2. Fiber composites: physical properties
2.2.1. Elastic properties
2.2.2. Viscoelastic properties

1. Composite structures
1.1. Composite structures
Components of Composite Materials
• Matrix phase: bulk materials such as:
Metals	Ceramics	Polymers
• Reinforcement: fibers and particulates such as:
Glass	Carbon	Kevlar
Silicon  Carbide	Boron	Ceramic
Ceramic	Metallic	Aggregate
• Interface: area of mechanical
A composite material (figure 1) is basically a combination of two or more materials, each of which retains it own distinctive properties. Multiphase metals are composite materials on a micro scale, but generally the term composite is applied to materials that are created by mechanically bonding two or more different materials together. The resulting material has characteristics that are not characteristic of the components in isolation. The concept of composite materials is ancient. An example is adding straw to mud for building stronger mud walls. Most commonly, composite materials have a bulk phase, which is continuous, called the matrix; and a dispersed, non-continuous, phase called the reinforcement. Some other examples of basic composites include concrete (cement mixed with sand and aggregate), reinforced concrete (steel rebar in concrete), and fiberglass (glass strands in a resin matrix).
[image: ]
Figure 1. A composite material

In about the mid 1960’s, a new group of composite materials, called advanced engineered composite materials (aka advanced composites), began to emerge. Advanced composites utilize a combination of resins and fibers, customarily carbon/graphite, kevlar, or fiberglass with an epoxy resin. The fibers provide the high stiffness, while the surrounding polymer resin matrix holds the structure together. The fundamental design concept of composites is that the bulk phase accepts the load over a large surface area, and transfers it to the reinforcement material, which can carry a greater load. The significance here lies in that there are numerous matrix materials and as many fiber types, which can be combined in countless ways to produce just the desired properties. These materials were first developed for use in the aerospace industry because for certain application they have a higher stiffness to weight or strength-to-weight ratio than metals. This means metal parts can be replaced with lighter weight parts manufactured from advanced composites. Generally, carbon-epoxy composites are two thirds the weight of aluminum, and two and a half times as stiff. Composites are resistant to fatigue damage and harsh environments, and are repairable.
Composites meeting the criteria of having mechanical bonding can also be produced on a micro scale. For example, when tungsten carbide powder is mixed with cobalt powder, and then pressed and sintered together, the tungsten carbide retains its identity. The resulting material has a soft cobalt matrix with tough tungsten carbide particles inside. This material is used to produce carbide drill bits and is called a metal-matrix composite. A metal matrix composite is a type of metal that is reinforced with another
Composites. A composite is commonly defined as a combination of two or more distinct materials, each of which retains its own distinctive properties, to create a new material with properties that cannot be achieved by any of the components acting alone. Using this definition, it can be determined that a wide range of engineering materials fall into this category. For example, concrete is a composite because it is a mixture of Portland cement and aggregate. Fiberglass sheet is a composite since it is made of glass fibers imbedded in a polymer. 
Composite materials are said to have two phases. The reinforcing phase is the fibers, sheets, or particles that are embedded in the matrix phase. The reinforcing material and the matrix material can be metal, ceramic, or polymer. Typically, reinforcing materials are strong with low densities while the matrix is usually a ductile, or tough, material. 
Some of the common classifications of composites are:
•	Reinforced plastics 
•	Metal-matrix composites 
•	Ceramic-matrix composites 
•	Sandwich structures 
•	Concrete 
Composite materials can take many forms but they can be separated into three categories based on the strengthening mechanism. These categories are dispersion strengthened, particle reinforced and fiber reinforced. Dispersion strengthened composites have a fine distribution of secondary particles in the matrix of the material. These particles impede the mechanisms that allow a material to deform. (These mechanisms include dislocation movement and slip, which will be discussed later). Many metal-matrix composites would fall into the dispersion strengthened composite category. Particle reinforced composites have a large volume fraction of particle dispersed in the matrix and the load is shared by the particles and the matrix. Most commercial ceramics and many filled polymers are particle-reinforced composites. In fiber-reinforced composites, the fiber is the primary load-bearing component. Fiberglass and carbon fiber composites are examples of fiber-reinforced composites. 
If the composite is designed and fabricated correctly, it combines the strength of the reinforcement with the toughness of the matrix to achieve a combination of desirable properties not available in any single conventional material.

1.2. On the design of composite materials and structures
The concept of designing a material to yield a desired set of properties has received impetus from the growing acceptance of composite materials. Inclusion of material design in the structural design process has had a significant effect on that process, particularly upon the preliminary design phase. In this preliminary design, a number of materials will be considered, including materials for which experimental materials property data are not available. Thus, preliminary material selection may be based on analytically predicted properties. The analytical methods are the result of studies of micromechanics, the study of the relationship between effective properties of composites and the properties of the composite constituents. The inhomogeneous composite is represented by a homogeneous anisotropic material with the effective properties of the composite.
The purpose of this lectures course is to provide an overview of techniques for analysis in the design of composite materials. Starting with the micromechanics of fiber and matrix in a lamina, analyses through simple geometric constructions in laminates are considered.
A summary is provided at the end of each section for the purpose of highlighting the most important concepts relative to the preceding subject matter. Their purpose is to reinforce the concepts, which can only fully be understood by reading the section. 
The analysis in this section deals primarily with symmetric laminates. It begins with a description of the micromechanics of basic lamina properties and leads into classical laminate analysis theory in an arbitrary coordinate system. It defines and compares various failure theories and discusses the response of laminate structures to more complex loads. It highlights considerations of translating individual lamina results into predicted laminate behavior. Furthermore, it covers loading situations and structural responses such as buckling, creep, relaxation, fatigue, durability, and vibration.


2. Basic lamina properties and micromechanics
The strength of any given laminate under a prescribed set of loads is probably best determined by conducting a test. However, when many candidate laminates and different loading conditions are being considered, as in a preliminary design study, analysis methods for estimation of laminate strength become desirable. Because the stress distribution throughout the fiber and matrix regions of all the plies of a laminate is quite complex, precise analysis methods are not available. However, reasonable methods do exist which can be used to guide the preliminary design process.
Strength analysis methods may be grouped into different classes, depending upon the degree of detail of the stresses utilized. The following classes are of practical interest:
1. Laminate level. Average values of the stress components in a laminate coordinate system are utilized.
2. Ply, or lamina, level. Average values of the stress components within each ply are utilized.
3. Constituent level. Average values of the stress components within each phase (fiber or matrix) of each ply are utilized.
4. Micro-level. Local stresses of each point within each phase are utilized.
Micro-level stresses could be used in appropriate failure criteria for each constituent to determine the external loads at which local failure would initiate. However, the uncertainties, due to departures from the assumed regular local geometry and the statistical variability of local strength make such a process impractical.
At the other extreme, laminate level stresses can be useful for translating measured strengths under single stress component tests into anticipated strength estimates for combined stress cases. However this procedure does not help in the evaluation of alternate laminates for which test data do not exist.
Ply level stresses are the commonly used approach to laminate strength. The average stresses in a given ply are used to calculate first ply failure and then subsequent ply failure leading to laminate failure. The analysis of laminates by the use of a ply-by-ply model is presented in next lectures
 Constituent level, or phase average stresses, eliminates some of the complexity of the micro-level stresses. They represent a useful approach to the strength of a unidirectional composite or ply. Micromechanics provides a method of analysis for constituent level stresses. Micromechanics is the study of the relations between the properties of the constituents of a composite and the effective properties of the composite. Starting with the basic constituent properties develop the micromechanical analysis of a lamina and the associated ply-by-ply analysis of a laminate.

2.1. Assumptions
Several assumptions have been made for characterizing lamina properties.
2.1.1 Material homogeneity
Composites, by definition, are heterogeneous materials. Mechanical analysis proceeds on the assumption that the material is homogeneous. This apparent conflict is resolved by considering homogeneity on microscopic and macroscopic scales. Microscopically, composite materials are certainly heterogeneous. However, on the macroscopic scale, they appear homogeneous and respond homogeneously when tested. The analysis of composite materials uses effective properties which are based on the average stress and average strain.
2.1.2 Material orthotropy
Orthotropy is the condition expressed by variation of mechanical properties as a function of orientation. Lamina exhibit orthotropy as the large difference in properties between the 0° and 90° directions. If a material is orthotropic, it contains planes of symmetry and can be characterized by four independent elastic constants.
2.1.3 Material linearity
Some composite material properties are nonlinear. The amount of nonlinearity depends on the property, type of specimen, and test environment. The stress-strain curves for composite materials are frequently assumed to be linear to simplify the analysis.
2.1.4 Residual stresses
One consequence of the microscopic heterogeneity of a composite material is the thermal expansion mismatch between the fiber and the matrix. This mismatch causes residual strains in the lamina after curing. The corresponding residual stresses are often assumed not to affect the material's stiffness or its ability to strain uniformly.

2.2. Fiber composites: physical properties
A unidirectional fiber composite (UDC) consists of aligned continuous fibers which are embedded in a matrix. The UDC physical properties are functions of fiber and matrix physical properties, of their volume fractions, and perhaps also of statistical parameters associated with fiber distribution. The fibers have, in general, circular cross-sections with little variability in diameter. A UDC is clearly anisotropic since properties in the fiber direction are very different from properties transverse to the fibers.
Properties of interest for evaluating stresses and strains are:
Elastic properties
Viscoelastic properties - static and dynamic
Thermal expansion coefficients
Moisture swelling coefficients
Thermal conductivity
Moisture diffusivity
A variety of analytical procedures may be used to determine the various properties of a UDC from volume fractions and fiber and matrix properties. The derivations of these procedures may be found in References 2.2(a) and (b).


2.2.1. Elastic properties
The elastic properties of a material are a measure of its stiffness. This information is necessary to determine the deformations which are produced by loads. In a UDC, the stiffness is provided by the fibers; the role of the matrix is to prevent lateral deflections of the fibers. For engineering purposes, it is necessary to determine such properties as Young's modulus in the fiber direction, Young's modulus transverse to the fibers, shear modulus along the fibers and shear modulus in the plane transverse to the fibers, as well as various Poisson's ratios. These properties can be determined in terms of simple analytical expressions.
The effective elastic stress-strain relations of a typical transverse section of a UDC, based on average stress and average strain, have the form:
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[image: ],                                            (2.2.1b)
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with inverse
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[image: ],                            (2.2.1c)
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where an asterisk (*) denotes effective values. Figure 2 illustrates the loadings which are associated with these properties.
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Figure 2. Basic loading to define effective elastic properties
The effective modulus k* is obtained by subjecting a specimen to the average state of stress ε 22 =ε 33 with all other strains vanishing in which case it follows from Equations 2.2.1(a) that
[image: ].                                 (2.2.1d)
Unlike the other properties listed above, k* is of little engineering significance but is of considerable analytical importance.
Only five of the properties in Equations 2.2.1(a-c) are independent. The most important interrelations of properties are:
[image: ],                                             (2.2.1e)
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[image: ],                                             (2.2.1g)
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[image: ].                                             (2.2.1i)
Computation of effective elastic moduli is a very difficult problem in elasticity theory and only a few simple models permit exact analysis. One type of model consists of periodic arrays of identical circular fibers, e.g., square periodic arrays or hexagonal periodic arrays (References 2.2.1(a) - (c)). These models are analyzed by numerical finite difference or finite element procedures. Note that the square array is not a suitable model for the majority of UDCs since it is not transversely isotropic.
The composite cylinder assemblage (CCA) permits exact analytical determination of effective elastic moduli (Reference 2.2.1(d)). Consider a collection of composite cylinders, each with a circular fiber core and a concentric matrix shell. The size of the cylinders may vary but the ratio of core radius to shell radius is held constant. Therefore, the matrix and fiber volume fractions are the same in each composite cylinder. One strength of this model is the randomness of the fiber placement, while an undesirable feature is the large variation of fiber sizes. It can be shown that the latter is not a serious concern.









The analysis of the CCA gives closed form results for the effective properties, , , , ,  and  and closed bounds for the properties , , and . Such results will now be listed for isotropic fibers with the necessary modifications for transversely isotropic fibers.
[image: ],                                 (2.2.1j)
[image: ].                                  (2.2.1k)
The last is an excellent approximation for all UDC.
[image: ],                       (2.2.1l)
[image: ].                                (2.2.1m)


As indicated earlier in the CCA analysis for does not yield a result but only a pair of bounds which are in general quite close (References 2.2.1(a), 2.2.1(d, e)). A preferred alternative is to use a method of approximation which has been called the Generalized Self Consistent Scheme (GSCS). According to this method, the stress and strain in any fiber is approximated by embedding a composite cylinder in the effective fiber composite material. The volume fractions of fiber and matrix in the composite cylinder are those of the entire composite. Such an analysis has been given in Reference [2] and results in a quadratic equation for . Thus,
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where
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To compute the resulting  and , use Equations 2.2.1(g-h). It is of interest to note that when the GSCS approximation is applied to those properties for which CCA results are available (see above Equations 2.2.1(j-m)), the CCA results are retrieved.
For transversely isotropic fibers, the following modifications are necessary:
For k*               kf is the fiber transverse bulk modulus.




For ,       ,  ,  kf as above.


For              .


For            ,  ηf = 1 + 2G2f/kf
Numerical analysis of the effective elastic properties of the hexagonal array model reveals that the values are extremely close to those predicted by the CCA/GSCS models as given by the above equations. The results are generally in good to excellent agreement with experimental data.
The simple analytical results given here predict effective elastic properties with sufficient engineering accuracy. They are of considerable practical importance for two reasons. First, they permit easy determination of effective properties for a variety of matrix properties, fiber properties, volume fractions, and environmental conditions. Secondly, they provide the only approach known today for experimental determination of carbon fiber properties.
For purposes of laminate analysis, it is important to consider the plane stress version of the effective stress-strain relations. Let x3 be the normal to the plane of a thin unidirectional-reinforced lamina. The plane stress condition is defined by
[image: ].                                  (2.2.1u)
Then from Equations 2.2.1(b-c)
[image: ],   [image: ],   [image: ].              (2.2.1v)
The inversion of Equation 2.2.1(v) gives
[image: ],   [image: ],   [image: ],          (2.2. 1w)
where
[image: ],   [image: ],   [image: ].            (2.2.1x)



For polymer matrix composites, at the usual 60% fiber volume fraction, the square of  is close enough to zero to be neglected and the ratio of / is approximately 0.1 - 0.2. Consequently, the following approximations are often useful.
[image: ].                         (2.2.1y)

2.2.2. Viscoelastic properties
The simplest description of time-dependence is linear viscoelasticity. Viscoelastic behavior of polymers manifests itself primarily in shear and is negligible for isotropic stress and strain. This implies that the elastic stress-strain relation
[image: ],                           (2.2.2a)

where K is the three-dimensional bulk modulus, remains valid for polymers. When a polymeric specimen is subjected to shear strain  which does not vary with time, the stress needed to maintain this shear strain is given by
[image: ],                                         (2.2.2b)

and G(t) is defined as the shear relaxation modulus. When a specimen is subjected to shear stress, , constant in time, the resulting shear strain is given by
[image: ]                                           (2.2.2c)
and g(t) is defined as the shear creep compliance.
Typical variations of relaxation modulus G(t) and creep compliance g(t) with time are shown in Figure 3. These material properties change significantly with temperature. The relaxation modulus decreases with increasing temperature and the creep compliance increases with increasing temperature, which implies that the stiffness decreases as the temperature increases. The initial value of these properties at "time-zero" are denoted Go and go and are the elastic properties of the matrix. If the applied shear strain is an arbitrary function of time, commencing at time-zero, Equation (2.2.2b) is replaced by
[image: ].                        (2.2.2d)
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Figure 3. Typical viscoelastic behavior

Similarly, for an applied shear stress which is a function of time, Equation 2.2.2(c) is replaced by
[image: ].                      (2.2.2e)

The viscoelastic counterpart of Young's modulus is obtained by subjecting a cylindrical specimen to axial strain constant in space and time. Then
[image: ]                                              (2.2.2f)

and E(t) is the Young's relaxation modulus. If the specimen is subjected to axial stress, , constant is space and time, then
[image: ]                                              (2.2.2g)
and e(t) is Young's creep compliance. Obviously E(t) is related to K and G(t), and e(t) is related to k and g(t). (See Reference 2.2.2(a).) 
The basic problem is the evaluation of the effective viscoelastic properties of a UDC in terms of matrix viscoelastic properties and the elastic properties of the fibers. (It is assumed that the fibers themselves do not exhibit any time-dependent properties.) This problem has been resolved in general fashion in [4]. Detailed analysis shows that the viscoelastic effect in a UDC is significant only for axial shear, transverse shear, and transverse uniaxial stress.



For any of average strains , and  constant in time, the time-dependent stress response will be
[image: ],   [image: ],   [image: ].            (2.2.2h)
For any of stresses σ22, σ23, and σ12 constant in time, the time-dependent strain response will be
[image: ],   [image: ],   [image: ],            (2.2.2i)
where material properties in Equations 2.2.2(h) are effective relaxation moduli and the properties in Equations 2.2.2(i) are effective creep functions. All other effective properties may be considered elastic. This implies in particular that if a fiber composite is subjected to stress σ11(t) in the fiber direction, then
[image: ],   [image: ],                      (2.2.2j)


where  and  are the elastic results of Equations 2.2.2(k) with matrix properties taken as initial (elastic) matrix properties. Similar considerations apply to the relaxation modulus k*.


The simplest case of the viscoelastic properties entering into Equations 2.2.2(h-i) is the relaxation modulus (t) and its associated creep compliance  (t). A very simple result has been obtained for fibers which are infinitely more rigid than the matrix (Reference 2.2.2(a)). For a viscoelastic matrix, the results reduce to
[image: ],   [image: ].                             (2.2.2k)
This results in an acceptable approximation for glass fibers in a polymeric matrix and an excellent approximation for boron fibers in a polymeric matrix. However, the result is not applicable to the case of carbon or graphite fibers in a polymeric matrix since the axial shear modulus of these fibers is not large enough relative to the matrix shear modulus. In this case, it is necessary to use the correspondence principle mentioned above. The situation for transverse shear is more complicated and involves complex Laplace transform inversion. 
All polymeric matrix viscoelastic properties such as creep and relaxation functions are significantly temperature dependent. If the temperature is known, all of the results from this section can be obtained for a constant temperature by using the matrix properties at that temperature. At elevated temperatures, the viscoelastic behavior of the matrix may become nonlinear. In this event, the UDC will also be nonlinearly viscoelastic and all of the results given here are not valid. The problem of analytical determination of nonlinear properties is, of course, much more difficult than the linear problem.

Questions for self-control
1. What is the composite structure?
2. How are elastic properties calculated?
3. How are physical properties of fibre composites written?
4. What viscoelastic properties of fibre composites do you know?
5. What is the difference between viscoelastic properties and elastic properties?
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Lecture topic: Fiber composites: strength and failure
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1.2. Thermal conduction and moisture diffusion
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3.1. Summary

1. Thermal expansion and Thermal conduction
1.1. Thermal expansion and moisture swelling
The elastic behavior of composite materials is concerned with externally applied loads and deformations. Deformations are also produced by temperature changes and by absorption of moisture in two similar phenomena. A change of temperature in a free body produces thermal strains while moisture absorption produces swelling strains. The relevant physical parameters to quantify these phenomena are thermal expansion coefficients and swelling coefficients.
Fibers have significantly smaller thermal expansion coefficients than do polymeric matrices. The expansion coefficient of glass fibers is 2.8 x 10-6 in/in/F° (5.0 x 10-6 m/m/C°) while a typical epoxy value is 30 x 10-6 in/in/F° (54 x 10-6 m/m/C°). Carbon and graphite fibers are anisotropic in thermal expansion. The expansion coefficients in the fiber direction are extremely small, either positive or negative of the order of 0.5 x 10-6 in/in/F° (0.9 x 10-6 m/m/C°). To compute these stresses, it is necessary to know the thermal expansion coefficients of the layers. Procedures to determine these coefficients in terms of the elastic properties and expansion coefficients of component fibers and matrix are discussed in this section.
When a laminate absorbs moisture, there occurs the same phenomenon as in the case of heating. Again, the swelling coefficient of the fibers is much smaller than that of the matrix. Free swelling of the layers cannot take place and consequently internal stresses develop. These stresses can be calculated if the UDC swelling coefficients are known.
Consider a free cylindrical specimen of UDC under uniform temperature change ΔT. Neglecting transient thermal effects, the stress-strain relations (Equation 1.1(a)) assume the form
[image: ],
[image: ],                        (1.1a)
[image: ],
where
α*1 - effective axial expansion coefficient,
α*2 - effective transverse expansion coefficient.
It has been shown by Levin that there is a unique mathematical relationship between the effective thermal expansion coefficients and the effective elastic properties of a two-phase composite. When the matrix and fibers are isotropic
[image: ],
[image: ],                    (1.1b)
where
αm,αf - matrix, fiber isotropic expansion coefficients,
Km,Kf - matrix, fiber three-dimensional bulk modulus,
E*1 ,ν*12 ,k* - effective axial Young's modulus, axial Poisson's ratio, and transverse bulk modulus.
These equations are suitable for glass/epoxy and boron/epoxy. They have also been derived in [1] – [3]. For carbon and graphite fibers, it is necessary to consider the case of transversely isotropic fibers. This complicates the results considerably as shown in [1].
Frequently thermal expansion coefficients of the fibers and matrix are functions of temperature. It is not difficult to show that Equations 1.1(b) remain valid for temperature-dependent properties if the elastic properties are taken at the final temperature and the expansion coefficients are taken as secant at that temperature.
To evaluate the thermal expansion coefficients from Equation 1.1(b) or (c), the effective elastic properties, k*, E*1 and ν*12 must be known. These may be taken as the values predicted by Equations 1.1(j-l) with the appropriate modification when the fibers are transversely isotropic. Figure 4 shows typical plots of the effective thermal expansion coefficients of graphite/epoxy.
When a composite with polymeric matrix is placed in a wet environment, the matrix will begin to absorb moisture. The moisture absorption of most fibers used in practice is negligible; however, aramid fibers alone absorb significant amounts of moisture when exposed to high humidity. The total moisture absorbed by an aramid/epoxy composite, however, may not be substantially greater than other epoxy composites.
When a composite has been exposed to moisture and sufficient time has elapsed, the moisture concentration throughout the matrix will be uniform and the same as the boundary concentration. It is customary to define the specific moisture concentration c by
[image: ],                                                 (1.1c)
where ρ is the density. The swelling strains due to moisture are functions of Δc and the swelling coefficients, βij
[image: ].                                              (1.1d)
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Figure 4. Effect of fiber volume on thermal expansion for representative carbon/epoxy composite. Elf 50 Msi (340 GPa)

If there are also mechanical stresses and strains, then the swelling strains are superposed on the latter. This is exactly analogous to the thermoelastic stress-strain relations of an isotropic material. The effective swelling coefficients β*ij are defined by the average strains produced in a free sample subjected to a uniform unit change of specific moisture concentration in the matrix. For discussions of other aspects of moisture absorption, both transient and steady state, see References [1], [2].
Finally, simultaneous moisture swelling and thermal expansion, or hygrothermal behavior can be considered. The simplest approach is to assume that the thermal expansion strains and the moisture swelling strains can be superposed. For a free specimen,
[image: ],
[image: ].                               (1.1e)
In this event, the matrix elastic properties in Equations 1.1(a) and (b) may be functions of the final temperature and moisture concentration. This dependence must be known to evaluate α*1, α*2 , β*1, and β*2 in Equation 1.1(e).
[image: ]
Figure 5. Effect of fiber volume on thermal expansion for representative
carbon/epoxy composite. Elf = 50 Msi (340 GPa)

1.2. Thermal conduction and moisture diffusion
The thermal conduction analysis has many similarities with the analyses for moisture diffusion, as well as electrical conduction, and dielectric and magnetic properties. Since these conductivity problems are governed by similar equations, the results can be applied to each of these areas.
Let T(x) be a steady state temperature field in a homogeneous body. The temperature gradient is given by
[image: ]                                                (1.2a)
and the heat flux vector by
[image: ],                                             (1.2b)
where μij is the conductivity tensor. It may be shown that for isotropic matrix and fibers, the axial conductivity μ*1 is given by
[image: ]                                        (1.2c)
and for transversely isotropic fibers
[image: ],                                     (1.2d)
where μ1f is the longitudinal conductivity of the fibers. The results of Equations 1.2(c) and (d) are valid for any fiber distribution and any fiber cross-section.
The problem of transverse conductivity is mathematically analogous to the problem of longitudinal shearing. All results for the effective longitudinal shear modulus G*1 can be interpreted as results for transverse effective conductivity μ*2. In particular, for the composite cylinder assemblage model
[image: ]=
[image: ].                                 (1.2e)
These results are for isotropic fibers. For carbon and graphite fibers μf should be replaced by the transverse conductivity μ2f of the fibers. As in the elastic case, there is reason to believe that Equation 1.2(e) accurately represents all cases of circular fibers which are randomly distributed and not in contact. Again the hexagonal array numerical analysis results coincide with the number predicted by Equation 1.2(e).
To interpret the results for the case of moisture diffusivity, the quantity μm is interpreted as the diffusivity of the matrix. Since moisture absorption of fibers is negligible, μf is set equal to zero. The results are then
[image: ],   
[image: ].                                        (1.2f)
These equations describe the moisture diffusivity of a composite material.

2. Fiber composites: strength and failure
The mathematical treatment of the relationships between the strength of a composite and the properties of its constituents is considerably less developed than the analysis for the other physical property relationships discussed in Section 1. Failure is likely to initiate in a local region due to the influence of the local values of constituent properties and the geometry in that region. This dependence upon local characteristics of high variability makes the analysis of the composite failure mechanisms much more complex than the analyses of the physical properties previously discussed.
Because of the complexity of the failure process, it may be desirable to regard the strength of a unidirectional fiber composite subjected to a single principal stress component as a quantity to be measured experimentally, rather than deduced from constituent properties. Such an approach may well be the practical one for fatigue failure of these composites. 
Indeed, the issue of determining the degree to which heterogeneity should be considered in the analysis of composite strength and failure is a matter for which there exists a considerable degree of difference of opinion. At the level of unidirectional composites, it is well to examine the effects upon failure of the individual constituents to develop an understanding of the nature of the possible failure mechanisms. This subject is discussed in the following sections. The general issue of the approach to failure analysis is treated further in laminate strength and failure.
The strength of a fiber composite clearly depends upon the orientation of the applied load with respect to the direction in which the fibers are oriented as well as upon whether the applied load is tensile or compressive. The following sections present a discussion of failure mechanisms and composite constituent property relations for each of the principal loading conditions.

2.1. Axial tensile strength

One of the most attractive properties of advanced fiber composites is high tensile strength. The simplest model for the tensile failure of a unidirectional fiber composite subjected to a tensile load in the fiber direction is based upon the elasticity solution of uniform axial strain throughout the composite. Generally, the fibers have a lower strain to failure than the matrix, and composite fracture occurs at the failure strain of the fibers alone. This results in a composite tensile strength, , given by:
[image: ],


where  - the fiber tensile strength -  the stress in the matrix at a strain equal to the fiber failure strain.
The problem with this approach is the variability of the fiber strength. Non-uniform strength is characteristic of most current high-strength fibers. There are two important consequences of a wide distribution of individual fiber strengths. First, all fibers will not be stressed to their maximum value simultaneously. Secondly, those fibers which break earliest during the loading process will cause perturbations of the stress field near the break, resulting in localized high fiber-matrix interface shear stresses. These shear stresses transfer the load across the interface and also introduce stress concentrations into adjacent unbroken fibers.
The stress distribution at each local fiber break may cause several possible failure events to occur. The shear stresses may cause a crack to progress along the interface. If the interface is weak, such propagation can be extensive. In this case, the strength of the composite material may differ only slightly from that of a bundle of unbounded fibers. This undesirable mode of failure can be prevented by a strong fiber-matrix interface or by a soft ductile matrix which permits the redistribution of the high shear stresses. 
When the bond strength is high enough to prevent interface failure, the local stress concentrations may cause the fiber break to propagate through the matrix, to and through adjacent fibers. Alternatively, the stress concentration in adjacent fibers may cause one or more of such fibers to break before failure of the intermediate matrix. If such a crack or such fiber breaks continue to propagate, the strength of the composite may be no greater than that of the weakest fiber. 
This failure mode is defined as a weakest link failure. If the matrix and interface properties are of sufficient strength and toughness to prevent or arrest these failure mechanisms, then continued load increases will produce new fiber failures at other locations in the material. An accumulation of dispersed internal damage results. 
It can be expected that all of these effects will occur before material failure. That is, local fractures will propagate for some distance along the fibers and normal to the fibers. These fractures will initiate and grow at various points within the composite. Increasing the load will produce a statistical accumulation of dispersed damage regions until a sufficient number of such regions interact to provide a weak surface, resulting in composite tensile failure.

2.1.1. Weakest link failure
The weakest link failure model assumes that a catastrophic mode of failure is produced with the occurrence of one, or a small number of, isolated fiber breaks. The lowest stress at which this type of failure can occur is the stress at which the first fiber will break. The expressions for the expected value of the weakest element in a statistical population have been applied by Zweben to determine the expected stress at which the first fiber will break. For practical materials in realistic structures, the calculated weakest link failure stress is quite small and, in general, failure cannot be expected in this mode.

2.1.2. Cumulative weakening failure
If the weakest link failure mode does not occur, it is possible to continue loading the composite. With increasing stress, fibers will continue to break randomly throughout the material. When a fiber breaks, there is a redistribution of stress near the fracture site. The treatment of a fiber as a chain of links is appropriate to the hypothesis that fracture is due to local imperfections. The links may be considered to have a statistical strength distribution which is equivalent to the statistical flaw distribution along the fibers. Additional details for this model are given in References 1(a). The cumulative weakening model does not consider the overstress on adjacent fibers or the effect of adjacent laminae.

2.1.3. Fiber break propagation failure
The effects of stress perturbations on fibers adjacent to broken fibers are significant. The load concentration in the fibers adjacent to a broken fiber increases the probability that a second fiber will break. Such an event will increase the probability of additional fiber breaks, and so on. The fiber break propagation mode of failure was studied by Zweben. The occurrence of the first fracture of an overstressed fiber was proposed as a measure of the tendency for fiber breaks to propagate, and, hence, as a failure criterion for this mode. Although the first multiple break criterion may provide good correlations with experimental data for small volumes of material, it gives very low failure stress predictions for large volumes of material. Additional work in this area can be found in [3] – [6].

2.1.4. Cumulative group mode failure
As multiple broken fiber groups grow, the magnitude of the local axial shear stress increases and axial cracking can occur. The cumulative group mode failure model includes the effects of the variability of fiber strength, load concentrations in fibers adjacent to broken fibers, and matrix shear failure or interfacial debonding which will serve to arrest the propagating cracks. As the stress level increases from that at which fiber breaks are initiated to that at which the composite fails, the material will have distributed groups of broken fibers. This situation may be considered as a generalization of the cumulative weakening model. In practical terms, the complexity of this model limits its use.
Each of these models has severe limitations for the quantitative prediction of tensile strength. However, the models show the importance of variability of fiber strength and matrix stress-strain characteristics upon composite tensile strength.


2.2. Axial compressive strength
Both strength and stability failures must be considered for compressive loads applied parallel to the fibers of a unidirectional composite. Microbuckling is one proposed failure mechanism for axial compression. Small wave-length micro-instability of the fibers occurs in a manner analogous to the buckling of a beam on an elastic foundation. It can be demonstrated that this instability can occur even for a brittle material such as glass. Analyses of this instability were performed independently in [4] The energy method for evaluation of the buckling stress has been used for these modes. This procedure considers the composite as stressed to the buckling load. The strain energy in this compressed but straight pattern (extension mode) is then compared to an assumed buckling deformation pattern (shear mode) under the same load. The change in strain energy in the fiber and the matrix can be compared to the change in potential energy associated with the shortening of the distance between the applied loads at the ends of the fiber. The condition for instability is given by equating the strain energy change to the work done by the external loads during buckling.

The results for the compressive strength, , for the extension mode is given by
[image: ].                                       (2.2a)
The result for the shear mode is
[image: ].                                             (2.2b)
The compressive strength of the composite is plotted as a function of the fiber volume fraction, vf, in Figure 6 for E-glass fibers embedded in an epoxy matrix. The compressive strength of glass-reinforced plastic, with a fiber volume fraction of 0.6 to 0.7, is on the order of 460 to 600 ksi (3100 to 4100 MPa). Values of this magnitude do not appear to have been measured for any realistic specimens. However, the achievement of a strength of half a million psi in a composite of this type would require an average shortening greater than 5%. For the epoxy materials used in this calculation, such a shortening would result in a decrease in the effective shear stiffness of the matrix material since the proportional limit of the matrix would be exceeded. Hence, it is necessary to modify the analysis to consider the inelastic deformation of the matrix. As a first approximation, the matrix modulus in Equations 2.2(a) and (b) can be replaced by a reduced modulus. A more general result can be obtained by modeling the matrix as an elastic, perfectly plastic material. For this matrix, the secant value at each axial strain value may be assumed to govern the instability. These assumptions (Reference 3.2(d)) yield the following result for the shear mode:
[image: ],                                       (2.2c)
where Fcpl is the matrix yield stress level.

[image: ]
Figure 6. Compressive strength of glass-reinforced epoxy composite


For the generally dominant shear mode, the elastic results of Equation 2.2(b) are independent of the fiber modulus, yet the compressive strength of boron/epoxy is much greater than that of glass/epoxy composites. One hypothesis to explain this discrepancy, is that use of the stiffer boron fibers yields lower matrix strains and less of a strength reduction due to inelastic effects. Thus, the results of Equation 2.2(c) show a ratio of  or 2.4 for the relative strengths of boron compared to glass fibers in the same matrix.
All of the analytical results above indicate that compressive strength is independent of fiber diameter. Yet different diameter fibers may yield different compressive strengths for composites because large diameter fibers such as boron (0.005 inch, 0.13 mm D) are better collimated than small diameter fibers, such as glass (0.0004 in, 0.010 mm D). For small diameter fibers, such as aramid and carbon, local out-of-straightness can introduce matrix shear stresses, cause fiber debonding, and produce lower instability stress levels. Carbon and aramid fibers are anisotropic and have extremely low axial shear moduli. As a result, the elastic buckling stress in the shear mode is reduced to:
[image: ],                                   (2.2d)
where G1f is the fiber longitudinal shear modulus. For high fiber shear moduli, this equation reduces to Equation 2.2(b).
Another failure mechanism for oriented polymeric fibers such as aramid fibers is a kink-band formation at a specific angle to the direction of compressive stress. The formation of kink bands is attributed to the fibrillary structure of the highly anisotropic fiber and poor fiber shear strength. Breakup of the fiber into very small diameter fibrils results in degradation of shear stiffness and hence the compressive strength. 
The results of the compressive strength analyses indicate that for the elastic case, the matrix Young's modulus is the dominant parameter. For the inelastic case, however, there are strength limitations which depend both upon the fiber modulus and upon the matrix strength. For some materials, performance is limited by a matrix yield strength at a given fiber modulus. For other materials, a gain in compressive strength can be achieved by improving the matrix modulus.

2.3. Matrix mode strength
The remaining failure modes of interest are transverse tension and compression and axial shear. For each of these loading conditions, material failure can occur without fracture of the fibers, hence the terminology "matrix-dominated" or "matrix modes of failure". Micromechanical analyses of these failure modes are complex because the critical stress states are in the matrix, are highly non-uniform, and are very dependent upon the local geometry. As a result, it appears that the most fruitful approaches will be those that consider average states of stress.
There are two types of shearing stresses which are of interest for these matrix-dominated failures: (1) in a plane which contains the filaments, and (2) in a plane normal to the filaments. In the first case, the filaments provide very little reinforcement to the composite and the shear strength depends on the shear strength of the matrix material. In the second case, some reinforcement may occur; at high volume fractions of filaments, the reinforcement may be substantial. It is important to recognize that filaments provide little resistance to shear in any surfaces parallel to them.
The approach to shear failure analysis is to consider that a uniaxial fibrous composite is comprised of elastic-brittle fibers embedded in an elastic-perfectly plastic matrix. For the composite, the theorems of limit analysis of plasticity and may be used to obtain upper and lower bounds for a composite limit load. The limit load is defined as the load at which the matrix yield stress permits composite deformation to increase with no increase in load. The failure strength of a ductile matrix may be approximated by this limit load.

3. Strength under combined stress
It is possible to apply the micro-mechanical models for failure described above, to combined stresses in the principal directions. Little work of this type has been done however. Generally the strengths in principal directions have been used in a failure surface for a homogeneous, anisotropic material for estimation of strength under combined loads. The understanding of failure mechanisms resulting from the above micro-mechanical models can be used to define the general form of failure surface to be utilized. This approach is outlined in the following sections.
Knowledge of the different failure mechanisms and quantitative experimental data for a UDC under single stress components can be used to formulate practical failure criteria for combined stresses. Plane stress failure criteria are discussed below with references also given for more complicated stress systems. The stresses considered are averaged over a representative volume element. The fundamental assumption is that there exists a failure criterion of the form:
[image: ]                                           (3a)
which characterizes the failure of the UDC. The usual approach to construction of a failure criterion is to assume a quadratic form in terms of stress or strain since the quadratic form is the simplest form which can adequately describe the experimental data. The various failure criteria which have been proposed all use coefficients based on experimental information such as ultimate stresses under single load components. For example, the general quadratic version of Equation 3(a) for plane stress would be:
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[image: ].                   (3b)
The material has different strengths in uniaxial, longitudinal, and transverse tension and compression. Evidently the shear strength is not affected by the sign of the shear stress. It follows that all powers of shear stress in the failure criterion must be even. Consequently, the criterion simplifies to
[image: ].    (3c)
The ultimate stresses under single component stress conditions for each of σ11, σ22, and σ12 determine the constants for the failure criterion.
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[image: ].                                            (3d)
However, C12 cannot be determined from the single component ultimate stresses. Biaxial stress tests must be performed to determine this coefficient. Frequently, the coefficient is established by relating Equation 3(c) to the Mises-Henky yield criterion for isotropic materials, yielding
[image: ].                                    (3e)
The above failure criterion is the two-dimensional version of the Tsai-Wu criterion. Its implementation raises several problems; the most severe of these is that the failure criterion ignores the diversity of failure modes which are possible.
The identification of the different failure modes of a UDC can provide physically more realistic, and also simpler, failure criteria. Testing a polymer matrix UDC reveals that tensile stress in the fiber direction produces a jagged, irregular failure surface. Tensile stress transverse to the surface produces a smooth, straight failure surface (See Figures 7 and 8). Since the carrying capacity deterioration in the tensile fiber mode is due to transverse cracks and the transverse stress σ22 has no effect on such cracks, it is assumed that the plane tensile fiber mode is only dependent on the stresses σ11 and σ12.
For compressive σ11, failure is due to fiber buckling in the shear mode and the transverse stress σ22 has little effect on the compressive failure. In this compressive fiber mode, failure again depends primarily on σ11. The dependence on σ12 is not known and arguments may be made for and against including it in the failure criterion.
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Figure 7. Tensile fiber failure mode
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Figure 8. Tensile matrix failure mode

For tension transverse to the fibers, the tensile matrix mode, failure occurs by a sudden crack in the fiber direction as shown in Figure 8. Since stress in the fiber direction has no effect on a crack in the fiber direction, this failure mode is dependent only on σ22 and σ12.
For compressive stress transverse to the fibers, failure occurs on some plane parallel to the fibers, but not necessarily normal to σ22. This compressive matrix mode is produced by normal stress and shear stress on the failure plane. Again, the stress σ11 does not effect this failure.
Each of the failure modes described can be modeled separately by a quadratic polynomial. This approach provides four individual failure criteria. Note the choice of stress components included in each of these criteria, and the particular mathematical form used, are subjects which are not yet fully resolved. The following criteria appear to a reasonable set with which the different modes of failure can be handled separately.
Fiber modes
Tensile
[image: ].                                        (3f)
Compressive
[image: ].                                        (3g)
Matrix modes
Tensile
[image: ].                                      (3h)
Compressive
[image: ].                      (3i)


Note that  in Equation 3(i) should be taken as the absolute value. The ultimate transverse shear stress, , is very difficult to measure. A reasonable approximation for this quantity is the ultimate shear stress for the matrix. For any given state of stress, one each of Equations 2.4(f) and (g) and Equations 2.4(h) and (i) are chosen according to the signs of σ11 and σ22. The stress components are introduced into the appropriate pair and whichever criterion is satisfied first is the operative criterion.
The advantages are Equations 3(f) - (i) are:
1. The failure criteria are expressed in terms of single component ultimate stresses. No biaxial test results are needed.
2. The failure mode is identified by the criterion which is satisfied first.
The last feature is of fundamental importance for analysis of fiber composite structural elements, since it permits identification of the nature of initial damage. Moreover, in conjunction with a finite element analysis, it is possible to identify the nature of failure in elements, modify their stiff nesses accordingly, and proceed with the analysis to predict new failures.

3.1. Summary
• Composite strength analysis is most commonly performed, by industry, on the macromechanics level given that the analysis of composite materials uses effective lamina properties based on average stress and strain.
• Ply level stresses are the commonly used approach to laminate strength analysis.
• Lamina stress/strain is influenced by many properties of interest, but is dominated by mechanical load and environmental sensitivity.
• Stress-strain elastic behavior, in its simplest form, may be described as a function of a composite materials constitutive properties (i.e., E, G, ν, α).
• Several practical failure criteria exist today that: 1) depend upon cross-plied laminate coupon data to determine lamina stress/strain allowables and 2) identify the failure mode based on the allowable that is first exceeded by its stress/strain counterpart.

Questions for self-control:
1. What is the thermal expansion?
2. What is the axial tensile strength used for?
3. Where does the thermal conduction apply?
4. How is the fiber break propagation failure defined?
5. How is the matrix mode strength calculated?
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Lecture 4
Lecture topic: Analysis of laminates. Lamina stress-strain relations

The plan
1. Analysis of laminates
1.1. Lamina stress-strain relations
2. Lamination theory

1. Analysis of laminates
1.1. Lamina stress-strain relations
A laminate is composed of unidirectional-reinforced laminae oriented in various directions with respect to the axes of the laminate. The stress-strain relations must be transformed into the coordinate system of the laminate to perform the laminate stress-strain analysis. A new system of notation for the lamina elastic properties is based on x1 in the fiber direction, x2 transverse to the fibers in the plane of the lamina, and x3 normal to the plane of the lamina.
[image: ],
[image: ],                                (1.1a)
[image: ].
In addition, the laminae are now treated as effective homogeneous, transversely isotropic materials.
[image: ]            (1.1b)
It has become common practice in the analysis of laminates to utilize engineering shear strains rather than tensor shear strains. Thus the factor of two has been introduced into the stress-strain relationship of Equation 1.1(b).
The most important state of stress in a lamina is plane stress, where
[image: ].                                      (1.1c)
since it occurs from both in-plane loading and bending at sufficient distance from the laminate edges. The plane stress version of Equation 1.1(b) is
[image: ]                         (1.1d)
which may be written as
[image: ].                                        (1.1e)
Here [S], the compliance matrix, relates the stress and strain components in the principal material directions. These are called laminae coordinates and are denoted by the subscript l. 
Equation 1.1(d) relates the in-plane strain components to the three in-plane stress components. For the plane stress state, the three additional strains can be found to be
[image: ],
[image: ]                                    (1.1f)
and the complete state of stress and strain is determined.
The relations 1.1(d) can be inverted to yield
[image: ],                                         (1.1g)
or
[image: ].                                          (1.1h)
The matrix [Q] is defined as the inverse of the compliance matrix and is known as the reduced lamina stiffness matrix. Its terms can be shown to be
[image: ],                                      (1.1i)
[image: ],  [image: ].     (1.1j)
In the notation for the [Q] matrix, each pair of subscripts of the stiffness components is replaced by a single subscript according to the following scheme.
[image: ]
The reduced stiffness and compliance matrices 3.1(i) and (d) relate stresses and strains in the principal material directions of the material. To define the material response in directions other than these coordinates, transformation relations for the material stiffnesses are needed.
In Figure 9, two sets of coordinate systems are depicted. The 1-2 coordinate system corresponds to the principal material directions for a lamina, while the x-y coordinates are arbitrary and related to the 1-2 coordinates through a rotation about the axis out of the plane of the figure. The angle θ is defined as the rotation from the arbitrary x-y system to the 1-2 material system.
The transformation of stresses from the 1-2 system to the x-y system follows the rules for transformation of tensor components.
[image: ]                           (1.1k)
or
[image: ],                                             (1.1l)
where m = cosθ, and n = sinθ. In these relations, the subscript x is used as shorthand for the laminate coordinate system.
The same transformation matrix [θ] can also be used for the tensor strain components. However, since the engineering shear strains have been utilized, a different transformation matrix is required.
[image: ]                   (1.1m)
or
[image: ].                                             (1.1n)
[image: ]
1, 2 Principal Material Coordinates
x, y Laminate, or Arbitrary Coordinates
Figure 9. Coordinate systems

Given the transformations for stress and strain to the arbitrary coordinate system, the relations between stress and strain in the laminate system can be determined.
[image: ].                                        (1.1o)
The reduced stiffness matrix [Q] relates the stress and strain components in the laminate coordinate system.
[image: ].                                   (1.1p)

The terms within [] are defined to be
[image: ],
[image: ],
[image: ],
[image: ],                    (1.1q)
[image: ],
[image: ],
[image: ],
where the subscript 6 has been retained in keeping with the discussion following Equation 1.1(j).
[image: ].                                    (1.1r)





A feature of [] matrix which is immediately noticeable is that [] is fully-populated. The additional terms which have appeared in , 16 and 26, relate shear strains to extensional loading and vice versa. This effect of a shear strain resulting from an extensional strain is depicted in Figure 10. From Equations 1.1(q), these terms are zero for θ equal to 0° or 90°. Physically, this means that the fibers are parallel or perpendicular to the loading direction. For this case, extensional-shear coupling does not occur for an orthotropic material since the loadings are in the principal directions. The procedure used to develop the transformed stiffness matrix can also be used to find a transformed compliance matrix.
[image: ],                                            (1.1s)
[image: ],                                    (1.1t)
[image: ].                                          (1.1u)
Noting that the stress-strain relations are now defined in the laminate coordinate system, lamina stiffnesses can also be defined in this system. Thus, expanding the last of Equations 1.1(s) - (u):
[image: ].                       (1.1v)
The engineering constants for the material can be defined by specifying the conditions for an experiment. For σyy =σxy = 0 , the ratio σxx /εxx is Young's modulus in the x direction. For this same stress state, −εyy /εxx is Poisson's ratio. In this fashion, the lamina stiffnesses in the coordinate system of Equations 1.1(s) - (u) are found to be:
[image: ],
[image: ].                         (1.1w)
[image: ]
Figure 10. Extensional-shear coupling




It is sometimes desirable to obtain elastic constants directly from the reduced stiffnesses, , by using Equations 1.1(o). In the general case where the ij matrix is fully populated, this can be accomplished by using Equations 1.1(w) and the solution for Sij as functions of ij obtained from the inverse relationship of the two matrices. An alternative approach is to evaluate extensional properties for the case of zero shear strain. For single stress states and zero shear strain, the elastic constants in terms of the transformed stiffness matrix terms are:
[image: ],   [image: ],   [image: ].               (1.1x)
Also
[image: ].

From the terms in the  matrix (Equation 1.1(q)) and the stiffness relations (Equation 1.1(x)), the elastic constants in an arbitrary coordinate system are functions of all the elastic constants in the principal material directions as well as the angle of rotation. 
The variation of elastic modulus Ex with angle of rotation is depicted in Figure 11 for a typical graphite/epoxy material. For demonstration purposes, two different shear moduli have been used in generating the figure. The differences between the two curves demonstrate the effect of the principal material shear modulus on the transformed extensional stiffness. The two curves are identical at 0° and 90°, as expected since Ex is simply E1 or E2. Between these two endpoints, substantial differences are present. For the smaller shear modulus, the extensional stiffness is less than the E2 value from approximately 50° to just less than 90°. For these angles, the material stiffness is more strongly governed by the principal material shear modulus than by the transverse extensional modulus. The curves of Figure 11 can also be used to determine the modulus Ey by simply reversing the angle scale.
With the transformed stress-strain relations, it is now possible to develop an analysis for an assemblage of plies, i.e., a laminate.

[image: ]
Figure 11. Variation of Ex with angle and G12 for typical graphite/epoxy materials

2. Lamination theory
The development of procedures to evaluate stresses and deformations of laminates is crucially dependent on the fact that the thickness of laminates is much smaller than the in-plane dimensions. Typical thickness values for individual plies range between 0.005 and 0.010 inch (0.13 and 0.25 mm). Consequently, laminates using from 8 to 50 plies are still generally thin plates and, therefore, can be analyzed on the basis of the usual simplifications of thin plate theory.
In the analysis of isotropic thin plates it has become customary to analyze the cases of in-plane loading and bending separately. The former case is described by plane stress elastic theory and the latter by classical plate bending theory. This separation is possible since the two loadings are uncoupled for symmetric laminates; when both occur, the results are superposed.
The classical assumptions of thin plate theory are:
1. The thickness of the plate is much smaller than the in-plane dimensions;
2. The shapes of the deformed plate surface are small compared to unity;
3. Normals to the undeformed plate surface remain normal to the deformed plate surface;
4. Vertical deflection does not vary through the thickness; 
5. Stress normal to the plate surface is negligible.
On the basis of assumptions, the displacement field can be expressed as:
[image: ],   [image: ],   [image: ].          (2a)
with the x-y-z coordinate system defined in Figure 12. These relations (Equation 2(a)) indicate that the in-plane displacements consist of a mid-plane displacement, designated by the superscript (°), plus a linear variation through the thickness. The two partial derivatives are bending rotations of the midsurface. The use of assumption prescribes that uz does not vary through the thickness. 
The linear strain displacement relations are
[image: ],   [image: ],   [image: ]                 (2b)
and performing the required differentiations yields
[image: ],   [image: ],   [image: ]          (2c)
or
[image: ],                                          (2d)
where
[image: ]                                         (2e)
and
[image: ].                                       (2f)
[image: ]
Figure 12. Laminate construction

The strain at any point in the plate is defined as the sum of a mid-surface strain {εo}, and a curvature {κ} multiplied by the distance from the mid-surface.
For convenience, stress and moment resultants will be used in place of stresses for the remainder of the development of lamination theory (see Figure 13). The stress resultants are defined as
[image: ]
Figure 13. Stress and moment resultants
[image: ]                                     (2g)
and the moment resultants are defined as
[image: ],                                 (2h)
where the integrations are carried out over the plate thickness.
Noting Equations 2(b) and 2(c), relations between the stress and moment resultants and the mid-plane strains and curvatures can be written as
[image: ],                           (2i)
[image: ].                         (2j)
Since the transformed lamina stiffness matrices are constant within each lamina and the mid-plane strains and curvatures are constant with respect to the z-coordinate, the integrals in Equations 2(i) and (j) can be replaced by summations.
Introducing three matrices equivalent to the necessary summations, the relations can be written as
[image: ],                                       (2k)
[image: ],                                      (2l)
where the stiffness matrix is composed of the following 3x3 matrices:
[image: ],
[image: ],
[image: ],                                   (2m)
where N is the total number of plies, zi is defined in Figure 13 and subscript i denotes a property of the ith ply. Note that zi - zi-1 equals the ply thickness. Here the reduced lamina stiffnesses for the ith ply are found from Equations 2(k) and (l) using the principal properties and orientation angle for each ply in turn. Thus, the constitutive relations for a laminate have been developed in terms of stress and moment resultants.
Classical lamination theory has been used to predict the internal stress state, stiffness and dimensional stability of laminated composites. The constitutive law for CLT couples extensional, shear, bending and torsional loads with strains and curvatures. Residual strains or warpage due to differential shrinkage or swelling of plies in a laminate have also been incorporated in lamination theory using an environmental load analogy. The combined influence of various types of loads and moments on laminated plate response can be described using the ABD matrix from Equations 2(k) and (l). In combined form:
[image: ],           (2n)
where N are loads, M are moments, ε are strains, κ are curvatures and
Aij = extensional and shear stiffnesses,
Bij = extension-bending coupling stiffnesses,
Dij = bending and torsional stiffnesses.
Several observations regarding lay-up and laminate stacking sequence (LSS) can be made with the help of Equation 3.2(n). These include:
(1) The stiffness matrix Aij in Equation 2(n) is independent of LSS. Inversion of the stiffness matrix [ABD] yields the compliance matrix [A'B'D']. This inversion is necessary in order to calculate strains and curvatures in terms of loads and moments. The inversion results in a relationship between LSS and extension/shear compliances. However, this relationship is eliminated if the laminate is symmetric.
(2) Nonzero values of A16 and A26 indicates that there is extension/shear coupling (e.g., longitudinal loads will result in both extensional and shear strains). If a laminate is balanced A16 and A26 become zero, eliminating extension/shear coupling.
(3) Nonzero values of Bij indicates that there is coupling between bending/twisting curvatures and extension/shear loads. Traditionally, these couplings have been suppressed for most applications by choosing an LSS that minimizes the values of Bij. All values of Bij become zero for symmetric laminates. Reasons for designing with symmetric laminates include structural dimensional stability requirements (e.g., buckling, environmental warping), compatibility of structural components at joints and the inability to test for strength allowables of specimens that have significant values of Bij.
(4) In general, the values of Dij are nonzero and strongly dependent on LSS. The average plate bending stiffnesses, torsional rigidity and flexural Poisson's ratio can be calculated per unit width using components of the compliance matrix [A'B'D'], i.e.,
1/D'11 = bending stiffness about y-axis
1/D'22 = bending stiffness about x-axis
1/D'66 = torsional rigidity about x- or y-axis
-D'12/D'11 = flexural Poisson's ratio.
The D'16 and D'26 terms should also be included in calculations relating midplane curvatures to moments except when considering a special class of balanced, unsymmetric laminates.
(5) Nonzero values of D16 and D26 indicates that there is bending/twisting coupling. These terms will vanish only if a laminate is balanced and if, for each ply oriented at +θ above the laminate midplane, there is an identical ply (in material and thickness) oriented at -θ at an equal distance below the midplane. Such a laminate cannot be symmetric, unless it contains only 0° and 90° plies. Bending/twisting coupling can be minimized by alternating the location of +θ and -θ plies through the LSS.
Additional information on laminate stacking sequence effects is found in [1].


Questions for self-control
1. How are lamina stresses calculated?
2. How is the analysis of laminates determined?
3. What are the lamina strains?
4. How is the stiffness matrix defined?
5. What are the basics of the lamination theory?
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Lecture 5
Lecture topic: Laminate properties. Membrane stresses. Bending. Thermal expansion

The plan
1. Laminate properties
1.1. Membrane stresses
1.2. Bending
2. Thermal expansion
2.1. Moisture expansion
2.2. Conductivity

1. Laminate properties
The relations between the mid-surface strains and curvatures and the membrane stress and moment resultants are used to calculate plate bending and extensional stiffnesses for structural analysis. The effects of orientation variables upon plate properties are also considered. In addition to the mechanical loading conditions treated thus far, the effects of temperature changes upon laminate behavior must be understood. Further, for polymeric matrix composites, high moisture content causes dimensional changes which can be described by effective swelling coefficients.

1.1. Membrane stresses
Recalling above equations and noting that for symmetric laminates the [B] matrix is zero, the relations can be rewritten as
[image: ]                                (1.1a)
and
[image: ].                              (1.1b)
Since the extensional and bending behavior are uncoupled, effective laminate elastic constants can be readily determined. Inverting the stress resultant mid-plane strain relations yields
[image: ]                                      (1.1c)
from which the elastic constants are seen to be
[image: ],
[image: ],                               (1.1d)
where the divisor 2h corresponds to the laminate thickness.
Note that the [A] matrix is comprised of [Q] matrices from each layer in the laminate. It is obvious that the laminate elastic properties are functions of the angular orientation of the plies. This angular influence is illustrated in Figure 14 for a typical high modulus carbon/epoxy system which has the lamina properties listed in Table 1. The laminae are oriented in ±θ pairs in a symmetric, balanced construction, creating what is called an angle-ply laminate.

[image: ]
Figure 14. Laminate elastic constants for high modulus carbon/epoxy

The variation of shear modulus and Poisson's ratio are noteworthy in Figure 14. The shear modulus is equal to the unidirectional value for 0° and 90° and rises sharply to a maximum at 45°. The peak at 45° can be explained by noting that shear is equivalent to a combined state of tensile and compressive loads oriented at 45°. Thus, the shear loading on a [±45]s laminate is equivalent to tensile and compressive loading on a [0/90]s laminate. Effectively, the fibers are aligned with the loading and, hence, with the large shear stiffness.
An even more interesting effect is seen in the variation of Poisson's ratio. The peak value in this example is greater than 1.5. In an isotropic material, this would be impossible. In an orthotropic material, the isotropic restriction does not hold and a Poisson's ratio greater than one is valid and realistic. In fact, large Poisson's ratios are typical for laminates constructed from unidirectional materials with the plies oriented at approximately 30°.
Because of the infinite variability of the angular orientation of the individual laminae, one would assume that a laminate having a stiffness which behaves isotropically in the plane of the laminate could be constructed by using many plies having small, equal differences in their orientation. It can be shown that a symmetric, quasi-isotropic laminate can be constructed with as few as six plies as a [0/±60]s laminate. A general rule for describing a quasi-isotropic laminate states that the angles between the plies are equal to π / N, where N is an integer greater than or equal to 3, and there is an identical number of plies at each orientation in a symmetric laminate. For plies of a given material, all such quasi-isotropic laminates will have the same elastic properties, regardless of the value of N.
A quasi-isotropic laminate has in-plane stiffnesses which follow isotropic relationships
[image: ],                                         (1.1e)
where the subscript θ indicates any arbitrary angle. Additionally,
[image: ].                                      (1.1f)
There are two items which must be remembered about quasi-isotropic laminates. First and foremost, only the elastic in-plane properties are isotropic; the strength properties, in general, will vary with directions. The second item is that two equal moduli Ex = Ey do not necessarily indicate quasi-isotropy, as demonstrated in Table 1. The first two laminates in Table 1 are actually the same (a [0/90]s laminate rotated 45° is a [±45]s laminate). Note that the extensional moduli of these laminates are not the same and that the shear modulus of each laminate is not related to the extensional modulus and Poisson's ratio. For these laminates, the π /N relation has not been satisfied and they are not quasi-isotropic. The third laminate has plies oriented at 45° to each other but there are not equal numbers of plies at each angle. This laminate is also not quasi-isotropic.
This discussion of symmetric laminates has centered on membrane behavior. Symmetric laminates can be constructed which are very well behaved in the membrane sense. The bending behavior of symmetric laminates is considerably more complex, primarily due to the arrangement of plies through the thickness of the laminate.

Table 1. Elastic properties of laminates
[image: ]

1.2. Bending
The equations for bending analysis of symmetric laminates has been developed with the extensional analysis. The first complication that arises in the treatment of laminate bending deals with relationships between the extensional (A) and bending (D) elastic properties. In composite laminates, there is no direct relationship between extensional and bending stiffnesses, unlike the case of a homogeneous material where
[image: ].                                              (1.2a)
In determining the membrane stiffnesses (A), the position of the ply through the thickness of the laminate does not matter (Equation 1.2(a)). The relations for the bending stiffnesses are a function of the third power of the distance of the ply from the mid-surface. Therefore, the position of the plies with respect to the mid-surface is critical. 
The three laminates are all quasi-isotropic. The membrane properties are isotropic and identical for each of the laminates. The bending stiffnesses can be seen to be a strong function of the thickness position of the plies. Additionally, bending stiffness calculations based on homogeneity do not correspond to lamination theory calculations. Thus, the simple relations between extensional and bending stiffnesses are lost and lamination theory must be used for bending properties. Table 1 also demonstrates that quasi-isotropy holds only for extensional stiffnesses.
Another complication apparent involves the presence of the bending-twisting coupling terms, D16 and D26. The corresponding extensional-shear coupling terms are zero because of the presence of pairs of layers at ±60° orientations. Noting that the bending-twisting terms can be of the same order of magnitude as the principal bending terms, D11, D22, and D66, the bending-twisting effect can be severe. This effect can be reduced by the proper selection of stacking sequence.
Another example that shows how the laminate stacking sequence (LSS) can significantly affect composite behavior is the bending stiffness of a laminated beam with rectangular cross-section (h ≡ laminate thickness). For the purpose of this example, define effective in-plane and bending moduli along the beam axis as
[image: ],                                            (1.2b)
[image: ]                                           (1.2c) 
respectively. The relationship,
[image: ]                                      (1.2d)
provides a relative measure of the effect of LSS on beam bending stiffness. Bending moduli of laminated beams approach those of homogeneous beams as the number of plies increase provided that there is no preferential stacking of ply orientations through the thickness.
Table 2 shows lamination theory predictions of in-plane and effective bending moduli for beams with seven different LSS variations of a 16-ply, carbon/epoxy, quasi-isotropic lay-up.1 Note that the in-plane moduli are independent of LSS because all lay-ups are symmetric. Bending moduli are shown to vary significantly above or below the in-plane moduli depending on preferential stacking of 0° plies towards the surface or center of the laminate, respectively.

Table 2. Stiffness predictions for seven different LSS for 16-ply, quasi-isotropic, carbon/epoxy, laminated beams
[image: ]
Properties for T300/934 (Vf = 0.63): 
E11 = 20.0 Msi (138 GPa), E22 = 1.4 Msi (9.7 GPa), 
G12 = 0.65 Msi (4.5 GPa), ν12 = 0.31,
Ply Thickness = 0.0056 in. (0.14 mm).

In general, the relationship between effective bending moduli and stacking sequence can be more complex than that shown in Table 2. Predictions in the table assumed that the basic lamina moduli were constant (i.e., linear elastic behavior). Depending on material type and the degree of accuracy desired, this assumption may lead to poor predictions. Lamina moduli for graphite/epoxy have been shown to depend on environment and strain level. Since flexure results in a distribution of tension and compression strains through the laminate thickness, nonlinear elastic lamination theory predictions may be more appropriate.
The example from Table 2 shows a significant effect of LSS on bending moduli of laminated beams. Similarly, calculations with Equation 1.2(n) can be used to indicate that LSS has a strong influence on the bending behavior of laminated plates. However, the bending response of common structures may depend more on the resulting moment of inertia, I, for a given geometry than on LSS. This is particularly true for stringer geometries typically used to stiffen composite plates in aerospace structures.
Figure 15 illustrates how structural geometry of a beam section can overshadow the effects of LSS on bending. Web and flange members of each I-beam have LSS indicated in the legend of Figure 15. These LSS are the same as those used in Table 1. The ordinate axis of the figure indicates a percent difference between laminated and homogeneous beam calculations. As shown in Figure 15, the effect of LSS on the El of an I-beam diminishes rapidly with increasing web height.
The LSS used in Figure 15 were chosen for illustrative purposes only and do not represent optimal LSS for a given application.
Additional information on laminate stacking sequence effects is found in references [6].

[image: ]
Figure 15. Laminated and homogeneous El calculations for an I-beam
stringer geometry with variable web height

2. Thermal expansion
As the use of composite materials becomes more commonplace, they are subjected to increasingly severe mechanical and environmental loading conditions. With the advent of high temperatures in systems, the range of temperatures over which composite systems can be used has increased. The response of laminates to temperature and moisture, as well as to applied loads, must be understood. Previously, laminate extensional and bending stiffnesses were determined; in this section laminate conductivities and expansion coefficients will be defined.
To determine the laminate thermal expansion coefficients and thermally-induced stresses quantitatively, begin at the ply level. The thermoelastic relations for strain in the principal material directions are
[image: ]                                       (2a)
or
[image: ],                                        (2b)
where [image: ]= strain induced by stress. The change in temperature is represented by ΔT and the vector {αl} represents the free thermal expansion coefficients of a ply. The individual components are
[image: ].                                           (2c)
The thermal strains, αl qΔT, are the lamina free thermal expansions, which produce no stress in an unconstrained lamina. The thermal expansion coefficients α1 and α2 are the effective thermal expansion coefficients α*1 and α*2 of the unidirectional composite.
Substituting for the mechanical strain terms in Equation 2(a) and inverting yields
[image: ],                                   (2d)
where
[image: ].
The components in the thermal stress coefficient vector {Γl} are
[image: ],                                   (2e)
where
[image: ].
The vector {Γl}ΔT physically represents a correction to the stress vector which results from the full constraint of the free thermal strains in a lamina. Both the thermal expansion vector, {αl }ΔT, and the thermal stress vector, {Γl}ΔT, can be transformed to arbitrary coordinates using the relations developed for stress and strain transformations, Equations 2(k) - (n). 
With the transformed thermal expansion and stress vectors, the thermal elastic laminate relations can be developed. Following directly from the development of Equations 2(g) - (l), the membrane relations are:
[image: ],                             (2f)
where
[image: ].                                  (2g)
Similarly, the bending relations are
[image: ],                           (2h)
where
[image: ].                                 (2i)
The integral relations for the thermal stress resultant vector {NT} and thermal moment resultant vector {MT} can be evaluated only when the change in temperature through the thickness is known. For the case of uniform temperature change through the thickness of a laminate, the term ΔT is constant and can be factored out of the integral, yielding:
[image: ],                           (2j)
[image: ].                         (2k)
With Equations 2(f) - (i), it is possible to determine effective laminate coefficients of thermal expansion and thermal curvature. These quantities are the extension and curvature changes resulting from a uniform temperature distribution.
Noting that for free thermal effects {N} = {M} = 0, and defining a free thermal expansion vector as
[image: ]                                       (2l)
and a free curvature vector as
[image: ].                                    (2m)
Equations 2(f) - (i) can be solved. After suitable matrix manipulations, the following expressions for thermal expansion and thermal curvature for symmetric laminates are found:
[image: ],                               (2n)
[image: ].                               (2o)
If the relation for {MT} in Equation 2(i) is examined, symmetry eliminates the {MT} vector. Therefore {δx} = 0 and no curvatures occur due to uniform temperature changes in symmetric laminates. 
The variation of the longitudinal thermal expansion coefficient for a symmetric angle-ply laminate is shown in Figure 16 to illustrate the effect of lamina orientation. At 0° the term αx is simply the axial lamina coefficient of thermal expansion, and at 90°, αx equals the lamina transverse thermal expansion coefficient. An interesting feature of the curve is the large negative value of αx in the region of 30°. Referring to Figure 14, the value of Poisson's ratio also behaves peculiarly in the region of 30°. The odd variation of both the coefficient and Poisson's ratio stems from the magnitude and sign of the shear extensional coupling present in the individual laminae.
Previously, classes of laminates were shown to have isotropic stiffnesses in the plane of the laminate. Similarly, laminates can be specified which are isotropic in thermal expansion within the plane of the laminate. The requirements for thermal expansion isotropy are considerably less restrictive than those for elastic constants. In fact, any laminate which has two identical, orthogonal thermal expansion coefficients and a zero shear thermal expansion coefficient is isotropic in thermal expansion. Therefore, [0/90]s and [±45]s laminates are isotropic in thermal expansion even though they are not quasi-isotropic for elastic stiffnesses.

[image: ]
Figure 16. Thermal expansion coefficients for high modulus carbon/epoxy

Laminates which are isotropic in thermal expansion have thermal expansions of the form:
[image: ],                                    (2p)
where the term α* can be shown to be a function of lamina properties only, as follows:
[image: ].                               (2q)
Thus, all laminates of a given ply material, which are isotropic in thermal expansion, have identical thermal expansion coefficients.

2.1. Moisture expansion
The term hygroelastic refers to the phenomenon in resin matrix composites when the matrix absorbs and desorbs moisture from and to the environment. The primary effect of moisture is a volumetric change in the laminae. When a lamina absorbs moisture, it expands, and when moisture is lost, the lamina contracts. Thus, the effect is very similar to thermal expansion. 
In a lamina, a free moisture expansion vector can be defined as
[image: ],                                              (2.1a)
where
[image: ]                                               (2.1b)
and Δc is the change in specific moisture. Noting that the relations 2.1(a) and (b) are identical to thermal expansion with βl q substituted for αl q and Δc for ΔT, it can easily be seen that all the relations developed for thermal effects can be used for moisture effects.

2.2. Conductivity
The conductivity (thermal or moisture) of a laminate in the direction normal to the surface is equal to the transverse conductivity of a unidirectional fiber composite. This follows from the fact that normal conductivity for all plies is identical and unaffected by ply orientation.
In-plane conductivities will be required for certain problems involving spatial variations of temperature and moisture. For a given uniform state of moisture in a laminate, the effective thermal conductivities in the x and y directions can be obtained by methods entirely analogous to those used for stiffnesses in [3]:
[image: ],
where
μ1 = conductivity in the fiber direction,
μ2 = conductivity transverse to the fibers,
m = cos θi,
n = sin θi
θi = orientation of ply I,

 = thickness of ply i
N = the number of plies,
2h = laminate thickness.
The results apply to both symmetric and unsymmetrical laminates. The results for moisture conductivity are identical.

Questions for self-control:
1. What are membrane stresses?
2. What is the thermal expansion?
3. What is the bending algorithm for composites?
4. How are laminate properties performed?
5. How is the moisture expansion defined?
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Lecture 6
Lecture topic: Thermal and hygroscopic analysis. Laminate stress analysis

The plan
1. Thermal and hygroscopic analysis
1.1. Symmetric laminates
1.2. Unsymmetric laminates
2. Laminate stress analysis
2.1. Stresses due to mechanical loads
2.2. Stresses due to temperature and moisture
2.3. Netting analysis
2.3.1. Netting analysis for design of filament wound pressure vessels
2.4. Interlaminar stresses
2.5 Nonlinear stress analysis
3. Summary

1. Thermal and hygroscopic analysis
The distribution of temperature and moisture through the thickness of a laminate influences the behavior of that laminate. The mathematical descriptions of these two phenomena are identical and the physical effects are similar. Some of these aspects have already been discussed in [1], [3].
A free lamina undergoes stress-free deformation due to temperature change or moisture swelling. In a laminate, stress-free deformation is constrained by adjacent layers producing internal stresses. In addition to these stresses, temperature and moisture content also affect the properties of the material. These effects are primarily related to matrix-dominated strength properties.
The principal strength-degrading effect is related to a change in the glass transition temperature of the matrix material. As moisture is absorbed, the temperature at which the matrix changes from a glassy state to a viscous state decreases. Thus, the elevated-temperature strength properties decrease with increasing moisture content. Limited data suggest that this process is reversible. When the moisture content of the composite is decreased, the glass transition temperature increases and the original strength properties return.



The same considerations also apply for a temperature rise. The matrix, and therefore the lamina, lose strength and stiffness when the temperature rises. Again, this effect is primarily important for the matrix-dominated properties such as E2, G12, , , and .
The differential equation governing time-dependent moisture sorption of an orthotropic homogeneous material is given by
[image: ],                             (1a)
where
t = time
x1, x2, x3 = coordinates in principal material directions
c = specific moisture concentration
D1, D2, D3 = moisture diffusivity coefficients
Equation 1(a) is based on Fick's law of moisture diffusion. The equation is analogous to the equation governing time dependent heat conduction with temperature φ replacing concentration c and thermal conductivities μ1, μ2, and μ3 replacing the moisture diffusivities. For a transversely isotropic lamina with x1 in the fiber direction, x2 in the transverse direction, and x3 = z in the direction normal to the lamina,

.                                               (1b)
These quantities are analogous to the thermal conductivities of a unidirectional fiber composite and have been discussed in [6].
An important special case is one-dimensional diffusion or conduction through the thickness of a lamina. In this case, Equation 3.4(a) reduces to
[image: ].                                           (1c)
This equation also applies to moisture diffusion or thermal conduction through a laminate, in the direction normal to its laminae planes, since all laminae are homogeneous in the z direction with equal diffusion coefficients, D3 = Dz.
Equation 1(c) is applicable to the important problem of time-dependent moisture diffusion through a laminate where the two faces are in different moisture environments. After a sufficiently long time has elapsed, the concentration reaches a time-independent state. In this state, since c is no longer timedependent, Equation 1(c) simplifies to
[image: ].                                            (1d)
The specific moisture concentration is a linear function of z and, if the laminate faces are in environments with constant saturation concentrations, c1 and c2, then
[image: ],                                    (1e)
where the laminate thickness is 2h and z originates at the mid-surface. In the case where c1= c2, Equation 1(e) reduces to c = c1 = constant as would be expected.
The above discussion of moisture conduction also applies to heat conduction.
Solutions to the time-dependent problem are readily available and considerable work has been performed in the area of moisture sorption. The most interesting feature of the solutions relates to the magnitude of the coefficient Dz. This coefficient is a measure of how fast moisture diffusion can occur. In typical epoxy matrix systems, Dz is of the order of 10-8 (in2/s, cm2/s) to 10-10 (in 2/s, cm 2/s). The diffusion coefficient is sufficiently small that full saturation of a resin matrix composite may require months or years even when subjected to 100% relative humidity.
The approach typically taken for design purposes is to assume a worst case. If the material is assumed to be fully saturated, it is possible to compute reduced allowable strengths. This is a conservative approach, since typical service environments do not generate full saturation. This approach is used since it allows for inclusion of moisture effects in a relatively simple fashion. It is to be expected that as the design data base and analytical methodologies mature, more physically realistic methods will be developed.
For heat conduction, the time required to achieve the stationary, or time-independent, state is extremely small. Therefore, the transient time-dependent state is generally of little practical importance for laminates.

1.1. Symmetric laminates
The laminate stacking sequence (LSS) can be chosen to control the effects of environment on stiffness and dimensional stability. When considering the special case of constant temperature and moisture content distributions in symmetric laminates, the effect of environment on in-plane stiffness relates to the relative percentages of chosen ply orientations. For example, LSS dominated by 0° plies will have longitudinal moduli that are nearly independent of environment. Note that increasing the environmental resistance of one laminate in-plane modulus may decrease another.
Bending and torsional stiffnesses depend on both LSS and environment. Preferential stacking of outer ply groups having relatively high extensional or shear moduli will also promote high bending or torsional stiffness, respectively. As with in-plane moduli, the higher the bending or torsional stiffness the better the corresponding environmental resistance. When optimizing environmental resistance, compromises between longitudinal bending, transverse bending and torsion need to be made due to competing relationships with LSS.
Unsymmetric temperature and moisture content distributions will affect the components of the stiffness matrix [ABD] differently, depending on LSS. In general, coupling components which were zero for symmetric laminates having symmetric temperature and moisture content distributions become nonzero for an unsymmetric environmental state. This effect can be minor or significant depending on LSS, material type, panel thickness and the severity of temperature/moisture content gradients.
Environmentally-induced panel warpage will occur in symmetric laminates when conditions yield an unsymmetric residual stress distribution about the laminate midplane. This may occur during the cure process due to uneven heating or crystallization through the laminate thickness. Unsymmetric temperature and moisture content distributions can also lead to panel warpage in symmetric laminates. This is due to the unsymmetric shrinkage or swelling through the laminate thickness.

1.2. Unsymmetric laminates
The in-plane thermal and moisture expansion of unsymmetric laminated plates subjected to any environmental condition (i.e., constant, symmetric and unsymmetric temperature and moisture content distributions) is dependent on LSS. In general, environmentally induced panel warpage occurs with unsymmetric laminates.
Panel warpage in unsymmetric laminates depends on LSS and changes as a function of temperature and moisture content. Zero warpage will occur in unsymmetric laminates only when temperature and moisture content distributions result in either zero or symmetric residual stress distributions. Equilibrium environmental states that result in zero residual stresses are referred to as stress-free conditions.
Since unsymmetric LSS warp as a function of temperature and moisture content, their use in engineering structures has generally been avoided. The warped shape of a given unsymmetric laminate has been found to depend on LSS and ratios of thickness to in-plane dimensions (e.g., References 1(b) and (c)). Relatively thin laminates tend to take a cylindrical shape rather than the saddle shape predicted by classical lamination theory. This effect has been accurately modeled using a geometrically nonlinear theory.
Additional information on laminate stacking sequence effects is found in the next Section.

2. Laminate stress analysis
The physical properties enable any laminate to be represented by an equivalent homogeneous anisotropic plate or shell element for structural analysis. The results of such analyses will be the definition of stress resultants, bending moments, temperature, and moisture content at any point on the surface which defines the plate. With this definition of the local values of state variables, a laminate analysis can be performed to determine the state of stress in each lamina to assess margins for each critical design condition.

2.1. Stresses due to mechanical loads
To determine stresses in the individual plies, the laminate mid-plane strain and curvature vectors are used. Writing the laminate constitutive relations
[image: ],                                (2.1a)
a simple inversion will yield the required relations for {ε°} and {κ}. Thus
[image: ].                              (2.1b)
Given the strain and curvature vectors, the total strain in the laminate can be written as
[image: ].
The strains at any point through the laminate thickness are now given as the superposition of the midplane strains and the curvatures multiplied by the distance from the mid-plane. The strain field at the center of ply i in a laminate is
[image: ],                                 (2.1c)
where the term 
[image: ]
corresponds to the distance from the mid-plane to the center of ply i. It is possible to define curvature induced strains at a point through the laminate thickness simply by specifying the distance from the midplane to the point in question.
The strains defined in Equation 2.1(c) correspond to the arbitrary laminate coordinate system. These strains can be transformed into the principal material coordinates for this ply using the transformations developed previously (Equation 2.1(b)). Thus
[image: ],                                     (2.1d)
where the superscript i indicates which layer and, therefore, which angle of orientation to use.
With the strains in the principal material coordinates defined, stresses in the same coordinates are written by using the lamina reduced stiffness matrix 
[image: ].                                    (2.1e)
Again, the stiffness matrix used must correspond to the correct ply, as each ply may be a different material.
The stresses in the principal material coordinates can be determined without the use of principal material strains. Using the strains defined in the laminate coordinates (Equation 2.1(c)) and the transformed lamina stiffness matrix, stresses in the laminate coordinate system can be written as
[image: ]                                     (2.1f)
and these stresses are then transformed to the principal material coordinates using the relations 2.1(f). Thus
[image: ].                                 (2.1g)
By reviewing these relations, it can be seen that, for the case of symmetric laminates and membrane loading, the curvature vector is zero. This implies that the laminate coordinate strains are identical in each ply and equal to the mid-plane strains. The differing angular orientation of the various plies will promote different stress and strain fields in the principal material coordinates of each ply.

2.2. Stresses due to temperature and moisture
Equations for the thermoelastic response of composite laminates were developed. It was indicated that thermal loading in laminates can cause stresses even when the laminate is allowed to expand freely. The stresses are induced because of a mismatch in thermal expansion coefficients between plies oriented in different directions. Either the mechanical stresses of the preceding section or the thermomechanical stresses can be used to evaluate laminate strength.
To determine the magnitude of thermally induced stresses, the thermoelastic constitutive relations are required. Noting that free thermal stress effects require that {N} = {M} = 0, these relations are written as
[image: ].                            (2.2a)
Inverting these relations yields the free thermal strain and curvature vectors for the laminate. Proceeding as before, the strain field in any ply is written as
[image: ].                                   (2.2b)
Stresses in the laminate coordinates are
[image: ],                                  (2.2c)
which can then be transformed to the principal material coordinates. Thus
[image: ].                                         (2.2d)
The stresses can also be found by transforming the strains directly to principal material coordinates and then finding the principal material coordinate stresses.
For uniform temperature fields in symmetric laminates, the coupling matrix, [B], and the thermal moment resultant vector, {MT}, vanish and:
[image: ]                                           (2.2e)
and
[image: ].                                             (2.2f)
In this case, the strains in the laminate coordinates are identical in each ply with the value
[image: ]                                      (2.2g)
and the stresses in the principal material coordinates are
[image: ].                                (2.2h)
These relations indicate that the stresses induced by the free thermal expansion of a laminate are related to the differences between the laminate and ply thermal expansion vectors. Therefore, the stresses are proportional to the difference between the amount the ply would freely expand and the amount the laminate will allow it to expand.
A further simplification can be found if the laminate under investigation is isotropic in thermal expansion. It can be shown that, for this class of laminates subjected to a uniform temperature change, the stresses in the principal material coordinates are identical in every ply. The stress vector is
[image: ],                                       (2.2i)
where it can be seen that the transverse direction stress is equal and opposite to the fiber direction stress.
Similar developments can be generated for moisture-induced stresses. All of the results of this section apply when moisture swelling coefficients, {βl}, are substituted for thermal expansion coefficients, {αl}.

2.3. Netting analysis
Another approach to the calculation of ply stresses is sometimes used for membrane loading of laminates. This procedure is netting analysis and, as the name implies, treats the laminate as a net. All loads are carried in the fibers while the matrix material serves only to hold the geometric position of the fibers.
Since only fibers are assumed to load in this model, stress-strain relations in the principal material directions can be written as
[image: ]                                                 (2.3a)
or
[image: ]                                                 (2.3b)
and
[image: ].                                    (2.3c)
The laminate stiffnesses predicted with a netting analysis will be smaller than those predicted using lamination theory, due to the exclusion of the transverse and shear stiffnesses. This effect is demonstrated in Table 3 for a quasi-isotropic laminate comprised of high-modulus graphite/epoxy. The stiffness properties predicted using a netting analysis are approximately 10% smaller than lamination theory predictions. Experimental work has consistently shown that lamination theory predictions are more realistic than netting analysis predictions.
Although the stiffness predictions using netting analysis are of limited value, the analysis can be used as an approximation of the response of a composite with matrix damage. It may be considered as a worst case analysis and is frequently used to predict ultimate strengths of composite laminates

Table 3. Laminate elastic constants
[image: ]

2.3.1. Netting analysis for design of filament wound pressure vessels
Netting analysis is a simple tool for approximating hoop and axial stresses in filament wound pressure vessels. The technique assumes that the stresses induced to the structure are carried entirely by the reinforcing fiber, and that all fibers are uniformly stressed in tension. The load carrying contribution of the matrix is neglected, and its only function is to hold the geometric position of the fibers. Netting analysis cannot be used to determine bending, shear or discontinuity stresses or resistance to buckling.
To illustrate the netting analysis principles, consider a filament wound pressure vessel of radius R with an internal pressure P. Assume the vessel is wound with only helical fibers at a wrap angle of ±α, an allowable fiber stress of σf, and thickness tf. Figure 17 illustrates the forces acting on the ±α helical layer in the axial direction. The running load, NX, is the force per unit length in the axial direction.

[image: ]
Figure 17. Helical layer element - axial direction

Summing forces in the axial direction:
[image: ].                            (2.3.1a)
Solving for tf provides the helical fiber thickness required to carry the internal pressure:
[image: ].                                    (2.3.1b)
Figure 18 shows the forces acting in the ±α helical layer in the hoop direction. The running load, NH, is the force per unit length in the hoop direction.

[image: ]
Figure 18. Helical layer element - hoop direction

Summing forces in the hoop direction:
[image: ].                              (2.3.1c)
Solving for tf,
[image: ]. .                                    (2.3.1d)
Substituting tf for Equation 2.3.1(b) in Equation 2.3.1(c), yields tan2α = 2 , solving for wrap angle, α = ±54.7 degrees. This is the wrap angle required for a pressure vessel utilizing only helical layers.
Now consider a filament wound pressure vessel with both helical and hoop layers. Where the helical layers have a wrap angle of ±α and the hoop layers have a wrap angle of 90 degrees. Again, Figure 19 illustrates the forces acting on the ±α helical layer in the axial direction. Summing forces in the axial direction and solving for tf, yields Equation 2.3.1(b), which is the helical fiber thickness required to carry the internal pressure. Figure 19 shows the forces acting on the ±α helical layer and the hoop layer in the hoop direction. Summing forces in the hoop direction and substituting tf from Equation 2.3.1(b) yields:
[image: ],                               (2.3.1e)
where tf is the hoop layer thickness required to carry the internal pressure. 
The fiber thickness (tf) and allowable fiber stress (σf) can also be expressed in the following standard filament winding terms. Band density (A), which is the quantity of fiber reinforcement per inch of band width, where the band width (W) is the width of fiber reinforcement as it is applied to the mandrel. Tow tensile capacity (f), which is the load carrying capability of one tow of reinforcement fiber, and layers (L), which is the number of layers required to carry the internal pressure. Substituting these terms into Equation 2.3.1(b) and solving for L:
[image: ].                               (2.3.1f)
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Figure 19. Helical and hoop layer element - hoop direction

Where L is the number of helical layers required to carry the internal pressure. Substituting these terms into Equation 2.3.1(e) and solving for L:
[image: ].                           (2.3.1g)
Where L is the number of hoop layers required to carry the internal pressure.
The tow tensile capacities (fHELIX and fHOOP) can be determined experimentally. Standard practice is to design and fabricate pressure vessels that will fail in either helix or hoop during hydroburst testing. Substituting the design parameters and hydroburst results into Equations 2.3.1(f) and 2.3.1(g), and solving for f provides the tow tensile capacity for the given fiber in both the helix and hoop directions.
Netting analysis is a useful tool for approximating hoop and axial stresses in filament wound pressure vessels. It is a conservative analysis technique that considers only the strength of the reinforcing fiber. However, when utilizing experimentally determined tow tensile capacities, netting analysis is an excellent preliminary design tool that is still used throughout the filament winding industry.

2.4. Interlaminar stresses
The analytical procedures which have been developed can be used to predict stresses within each lamina of a laminate. The stresses predicted are planar due to the assumed state of plane stress. There are cases where the assumption of plane stress is not valid and a three-dimensional stress analysis is required.
An example of such a case exists at certain free edges in laminates where stress free boundary conditions must be imposed.

2.5. Nonlinear stress analysis
All the preceding material in this chapter has related to laminae which behave in a linear elastic fashion. Composites can behave in a nonlinear manner due to internal damage or nonlinear behavior of the matrix material. Matrix nonlinearity or micro-cracking can result in laminae which have nonlinear stressstrain curves for transverse stress or axial shear stress. When this situation exists, the elastic laminate stress analysis must be replaced by a nonlinear analysis. A convenient procedure for the nonlinear analysis is presented in [4].

3. Summary
• When laminae are at an angle to the laminate reference axes, the lamina stiffness relations must be transformed into the laminate coordinate system to perform laminate stress-strain analysis.
• Stresses and strains are related in the principal lamina material directions by 6 x 6 symmetric compliance [S] and stiffness [Q] matrices.
• The transformation of stresses and strains from the principal lamina material direction to the laminate coordinate system is accomplished by following the rules for transformation of tensor components.
• Lamination theory makes the same simplifications as classical thin plate theory for isotropic materials. Therefore, the procedures used to calculate stresses and deformations are dependent on the fact that laminate thickness is considerably smaller than the laminate's in-plane dimensions.
• The strain at a y point in a laminate is defined as the sum of the mid-surface strain (ε), and the product of the curvature (κ) and the distance from the mid surface (z).
• Laminate load (N) and moment (M) resultants are related to mid-plane strains and curvatures as described by the [A], [B], and [D] 3 x 3 stiffness matrices.
• Two-dimensional lamination theory can generally be used to predict stresses within each lamina of a laminate. The planar stresses are predicted based on an assumption of plane stress. In cases where interlaminar stresses exist, three-dimensional stress analysis is required.
• In symmetric laminates, bending-extensional coupling is eliminated by a symmetric stacking sequence whereby [B] = 0.
• Since they are susceptible to warping as a result of processing and usage conditions, use of unsymmetric laminates in composite structures should generally be avoided for both design and manufacture.

Questions for self-control:
1. What existing laminates do you know?
2. What is the thermal and hygroscopic analysis?
3. What is the laminate stress analysis?
4. What are the main differences between the thermal hygroscopic analysis and the laminate stress analysis?
5. How are interlaminar stresses calculated?
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Lecture topic: Thickness effects. Edge effects. Compressive buckling and crippling

The plan
1. Lamina to laminate considerations
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2.2 Summary
2.3. Reinforced composite materials

1. Lamina to laminate considerations
1.1. Residual stresses and strains
Residual curing stresses and strains have virtually no effect on fiber-dominated laminate properties. However, residual stresses in the resin can be greater than the mechanical stresses needed to cause failure. Neglecting these residual stresses therefore may be nonconservative. 
The residual stresses may be high enough that resin microcracking may occur before any mechanical load is applied. Consequently, the principle of superposition may not be applicable as the mechanical loading may result in nonlinear behavior. As an example, typical epoxy matrix residual strains at the microlevel, resulting from cool down after curing at 350°F (180°C), may be approximately 25 to 100% of the laminate failure strain.


1.2. Thickness effects
Much of the difference in properties found when comparing laminates with different thicknesses can be explained by the residual stresses developed during processing. Internal stresses developed during processing may produce voids, delaminations, and microcracks or cause residual stresses in the laminate that may affect material properties. Excessive porosity, generally caused by poor processing, or environmental effects due to temperature and moisture conditions may also degrade the material and affect its behavior.
Variations in material properties between thick laminate test data from different sources, for laminates having the same thickness, can generally be attributed to differences in processing. Such variations can be minimized by optimizing the cure cycle and by proper process control.
The residual stresses may be caused by non-isothermal conditions present during the solidification phase. Different layers of the laminate will undergo different degrees of volume contraction at any given time during the process cycle. This gives rise to a self-equilibrating force system producing tension stresses in the center and compression stresses in the surface layers of the laminate as reported by Manson and Seferis. Thickness effects observed in composite laminates are primarily due to this phenomena.
In thermosetting materials, these through-the-thickness stress gradients can be virtually eliminated by modeling the total process, including cool-down, so isothermal conditions are present near the resin gelation point and are maintained for a sufficient period of time. In some high-temperature processing materials where rapid cooling is required, significant thermal stresses may build up in the laminate.
In their work, the authors in [6] present a method to experimentally determine and analyze the internal stresses developed during processing of a composite laminate. This method consists of laying up a certain number of plies, separated by a release ply that can be removed after processing. The internal stresses in the laminate can then be analyzed by considering the deformations of the individual sublaminates.
In summary, variations in material properties in laminated composites are mostly the result of thermally induced residual stresses, although environmental effects and process parameters other than tem perature may affect test data. True thickness effects are caused by temperature gradients across the thickness of the laminate. These effects may be minimized by mathematical modeling of the total process and can be virtually eliminated in thermosetting materials. Advance process models such as ROAST, described in Reference [9], may be used to optimize the process parameters.

1.3. Edge effects
Consideration of edge effects in laminated composites is necessary due to behavior not observed in homogeneous solids. A complex stress state exists between the layers of different orientation at the free edge of a laminate, such as along a straight edge or around the perimeter of a hole. Where a fiber in a laminate has been subjected to thermal or mechanical strain, the end of the cut fibers must transfer the load to adjacent fibers. If these adjacent fibers have a different orientation, they will present a locally stiffer path and accept the load. The matrix is the only mechanism for this load transfer. The stresses due to this load, namely interlaminar stresses, can be sufficient to cause local microcracking and edge delamination. These interlaminar stresses, in general, include normal (peel stress σz) and shear components (τyz, τxz) and are only present in a small region near the free edge. A typical interlaminar stress distribution is shown in Figure 20. The high gradients of these stresses depend on differences in Poisson's ratio and in-plane shear stiffness that exist between the laminae groups in a laminate. The same kinds of stresses are induced by residual thermal stresses due to cool-down after cure at elevated temperatures.
Failure often occurs as a result of delamination at the locations of high interlaminar stresses because of low interlaminar strength. The effects of free edge stress are sufficient to reduce the strength of certain specimens in both static and fatigue tests significantly. This premature failure makes coupon data difficult to apply to large components because of the local effects of the free edge failure mode. Classical laminate theory which assumes a state of plane stress is incapable of predicting the edge stresses. However, determination of such stresses by higher order plate theory or finite element analysis is practical. Therefore, consideration of edge interlaminar stresses in a laminate design is feasible. The gradients of this stress can be reduced by such measures as 1) changing the laminate stacking order, 2) minimizing the mismatch of the Poisson's ratio, the coefficient of mutual influence, and coefficients of thermal and moisture expansion between adjacent laminae, and 3) by inserting an inner layer which has a lower shear modulus and a finite thickness between laminae, thus allowing greater local strain to occur.
Edge effects may be analyzed by fracture mechanics, strength of materials, or other methods. These methods can be used to provide a guideline for designers to select the laminate configuration and material system best suited for a particular application.
Very little work has been performed to date on free edge effects for load conditions other than uniaxial tension or compression. Some analysis results indicate that in-plane shear, out-of-plane shear/bending, in-plane bending, twisting moments, and combined loading yield a higher magnitude of interlaminar stress relative to those associated with axial load conditions. For example, out-of-plane shear due to bending causes free edge interlaminar stresses that are an order of magnitude higher than that caused by axial tension. For more information on delaminations and free edge effects, see [5]. Information on the laminate stacking sequence effects is found in [8].
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Figure 20. Interlaminar stresses normalized with respect to the applied strain 

1.4. Effects of transverse tensile properties in unidirectional tape
The transverse strength properties play only a minor role in establishing cross-plied laminate strengths. It is, however, well-known that the effective "in-situ" transverse strength of transverse plies is much greater than the strength measured on the lamina. This effect has been handled by post-first ply failure analysis methods.
In-plane shear tests on laminae exhibit relatively high strains to failure (4 -5%). The much lower transverse tensile strains to failure (1/2%) indicate a marked notch sensitivity that is suppressed in crossplied laminates. The initial cracks that fail laminae are arrested by fibers in other directions; thus laminae with microcracks are still effective. Most laminae develop cracks due to residual thermal stresses and continue to function.

1.5. Laminate stacking sequence effects
1.5.1. Introduction
Stacking sequence describes the distribution of ply orientations through the laminate thickness. As the number of plies with chosen orientations increase, more stacking sequences are possible. For example, a symmetric 8-ply laminate with four different ply orientations has 24 different stacking sequences. This presents a predicament when attempting to optimize composite performance as a function of stacking sequence.
Laminated composite structural properties such as stiffness, dimensional stability, and strength have all been found to depend on laminate stacking sequence (LSS). Generally, each property has a different relationship with LSS. Therefore, the choice of LSS for a particular design application may involve a compromise. Design optimization requires verified analysis methods and an existing materials database. The development of verified analysis methods for predicting stiffness and stability of laminated composites is more mature than that for predicting strength.
Some simplified design guidelines for LSS are provided in [6]. These guidelines are generally conservative; however, they limit design optimization, and may even be misleading for some special cases. As a result, a comment on the reason for each guideline is included in the discussion. Verified analysis methods should be used to help judge the effects of LSS whenever possible.

1.5.2. Design guidelines
Laminate design starts by selecting the number of plies and ply angles required for a given application. Once the number of plies and ply angles are selected, a LSS is chosen. A LSS is considered het erogeneous when there is preferential stacking of specific ply orientations in different locations through the thickness of the laminate. Thick laminates with heterogeneous LSS are created by clumping plies of similar orientation. A LSS is said to be homogeneous if ply angles are evenly distributed through the laminate thickness. The ability to generate homogeneous LSS depends on the number of plies and ply angles. For example, it is impossible to create a homogeneous LSS for a four-ply laminate consisting of four different ply angles.
The following LSS guidelines are based on past experience from test and analysis. Guidelines are lumped under two categories; (1) strong recommendation, and (2) recommendation. Despite this classification, exceptions to the guidelines should be considered based on an engineering evaluation of the specific application.

1.5.2.1. Strong recommendations
1. Homogeneous LSS are recommended for strength controlled designs (In other words, thoroughly intersperse ply orientations throughout the LSS).
Comment: Heterogeneous laminates should be avoided for strength-critical designs unless analysis and test data is available that indicates a clear advantage. In cases where heterogeneous laminates cannot be avoided (e.g., minimum gage laminates), it is generally best to stack primary load-carrying plies toward the laminate core. The best way to view possible strength problems with heterogeneous LSS is to consider the behavior of individual sublaminates (i.e., groups of plies separated by delaminations) that may be created during manufacturing or service exposure. This will be discussed later in greater detail.
Heterogeneous LSS can yield optimum stiffness or stability performance; however, the effects on all other aspects of the design (e.g., strength, damage tolerance, and durability) should be considered before ignoring Recommendation 1. For example, interlaminar stress distributions are affected by variations in the in-plane stress field around the periphery of holes and cutouts and the "effective" LSS (i.e., ply orientations relative to a tangent to the edge). Since it is difficult to optimize for a single lay-up in this case, the best solution is to make the LSS as homogeneous as possible.
2. A LSS should have at least four distinct ply angles (e.g., 0°, ±θ°, 90°) with a minimum of 10% of the plies oriented at each angle. Ply angles should be selected such that fibers are oriented with principal load axes.
Comment: This rule is intended to avoid the matrix-dominated behavior (e.g., nonlinear effects and creep) of laminates not having fibers aligned with principal load axes. Such behavior can lead to low strengths and dimensional stability problems.
3. Minimize groupings of plies with the same orientation. For tape plies, stack no more than four plies of the same orientation together (i.e., limit stacked ply group thicknesses ≤0.03 in. (0.8 mm)). In addition, stacked ply group thicknesses with orientations perpendicular to a free edge should be limited to ≤0.015 in.(0.38 mm).
Comment: This guideline is used for laminate strength-critical designs. For example, it will help avoid the shear-out failure mode in bolted joints. It also considers relationships between stacked ply group thickness, matrix cracking (i.e., transverse tension and shear ply failures) and delamination.
In general, ply group thickness should be limited based on details of the design problem (e.g., loads, free edges, etc.) and material properties (e.g., interlaminar toughness). Note that the absolute level of ply group thickness identified in this guideline is based on past experience. It should be confirmed with tests for specific materials and design considerations.
4. If possible, LSS should be balanced and symmetric about the midplane. If this is not possible due to other requirements, locate the asymmetry or imbalance as near to the laminate midplane as possible. A LSS is considered symmetric if plies positioned at an equal distance above and below the midplane are identical (i.e., material, thickness, and orientation). Balanced is defined as having equal numbers of +θ and -θ plies, where θ is measured from the primary load direction.
Comment: This guideline is used to avoid shear/extension couplings and dimensional stability problems (e.g., warpage which affects component manufacturing tolerances). The extension/bending coupling of unsymmetric laminates can reduce buckling loads. Note that some coupling may be desired for certain applications (e.g., shear/extension coupling has been used for aeroelastic tailoring).


1.5.2.2. Recommendations
5. Alternate +θ and -θ plies through the LSS except for the closest ply either side of the symmetry plane. A +θ/-θ pair of plies should be located as closely as possible while still meeting the other guidelines.
Comment: This guideline minimizes the effect of bending/twisting coupling, which is strongest when angle plies are separated near the surface of a laminate. Modifications to this rule may promote more efficient stiffness and stability controlled designs.
6. Shield primary load carrying plies from exposed surfaces.
Comment: The LSS for laminates primarily loaded in tension or compression in the 0° direction should start with angle and transverse plies. Tensile strength, microbuckling resistance, impact damage tolerance and crippling strength can all increase by shielding the main load bearing plies from the laminate surface. With primary load fibers buried, exterior scratches or surface ply delamination will not have a critical effect on strength. For laminates loaded primarily in shear, consideration should be given to locating +45° and -45° plies away from the surface. For cases in which an element is shielded by other structures (e.g., shear webs), it may not be necessary to stack primary load carrying plies away from the surface.
7. Avoid LSS that create high interlaminar tension stresses (σz) at free edges. Analyses to predict free edge stresses and delamination strain levels are recommended to help select LSS. 
Comment: Composite materials tend to have a relatively low resistance to mode I delamination growth. Edge delamination, followed by sublaminate buckling can cause premature failure under compressive loads. Edge delamination occurring under tensile loads can also effectively reduce stiffness and lower the load carrying capability. Since delaminations occurring at the core of the laminate can have the strongest effect on strength, avoid locating tape plies with fibers oriented perpendicular to a free edge at the laminate midplane.
8. Minimize the Poisson's ratio mismatch between adjacent laminates that are cocured or bonded.
Comment: Excessive property mismatches between cobonded elements (e.g., skin and stringer flange) can result in delamination problems. In the absence of more sophisticated analysis tools, a general rule of thumb is
[image: ].                        )
As opposed to static strength, composites are not particularly notch-sensitive in fatigue; hole wear is often used as the governing criterion constituting fatigue failure of composites loaded in bearing.

1.6. Summary
• Laminate properties such as strength, stiffness, stability, and damage resistance and damage tolerance have been found to have some dependency upon laminate stacking sequence (LSS). Each property can have a different relationship with LSS. Thus, each given design application may involve a compromise relative to LSS determination.
• Homogeneous LSS are recommended for strength controlled designs (in other words, thoroughly intersperse ply orientations throughout the LSS).
• A LSS should have at least four distinct ply angles (e.g., 0°, ±θ°, 90°) with a minimum of 10% of the plies oriented at each angle. Ply angles should be selected such that fibers are oriented with principal load axes.
• Minimize groupings of plies with the same orientation. For tape plies, stack no more than four plies of the same orientation together (i.e., limit stacked ply group thicknesses <0.03 in. (0.8 mm)). In addition, stacked ply group thicknesses with orientations perpendicular to a free edge should be limited to ≤€0.015 in. (0.38 mm).
• If possible, LSS should be balanced and symmetric about the midplane. If this is not possible due to other requirements, locate the asymmetry or imbalance as near to the laminate midplane as possible. A LSS is considered symmetric if plies positioned at an equal distance above and below the midplane are identical (i.e., material, thickness, and orientation). Balanced is defined as having equal numbers of +θ and -θ plies, where θ is measured from the primary load direction.

2. Compressive buckling and crippling
2.1. Plate buckling and crippling
2.1.1. Introduction
Rectangular flat plates are readily found in numerous aerospace structures in the form of unstiffened panels and panels between stiffeners of a stiffened panel, and as elements of a stiffener. Closed form classical buckling solutions available in the literature are limited to orthotropic plates with certain assumed boundary conditions. These boundary conditions may be fixed, simply supported, or free. For expediency, the engineer may wish to assume the most appropriate boundary conditions and obtain a quick solution rather than resort to using a buckling computer program such as [7]. However, the closed form solutions of laminated orthotropic plates are appropriate only when the lay-ups are symmetrical and balanced. Symmetrical implies identical corresponding plies about the plate mid-surface. Balanced refers to having a minus θ ply for every plus θ ply on each side of the mid-surface. Symmetrical and balanced laminated plates have Bij terms vanish and the D16 and D26 terms virtually vanish. However, the balanced plies (±θ) should be adjacent; otherwise the D16 and D26 terms could become significant and invalidate the use of the orthotropic analysis. The buckling solutions could be significantly nonconservative for thin unbalanced or unsymmetric plates (see Reference [7]. Note that not all closed form solutions give direct answers; sometimes the equations must be minimized with respect to certain parameters as will be shown later.
The behavior of flat plates in compression involves initial buckling, postbuckling out-of-plane displacements, and crippling (ultimate postbuckling failure). Only at crippling does permanent damage occur, usually some form of delamination due to interlaminar tensile or shear stresses.
Nomenclature used to describe the buckling behavior of composite plates is given in Table 4.

Table 4. Buckling and crippling symbols
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2.1.2. Initial buckling
Initial buckling is defined to occur at a load that results in incipient out-of-plane displacements. The classical equations are elastic, and finite transverse shear stiffness effects are neglected. (Reference 7.1.2). The buckling of certain plate geometries, however, can be influenced by the finite shear stiffness effects as shown in Section 2.1.

2.1.3. Uniaxial loading - long plate with all sides simply supported
The case of a long plate (a/b > 4) with all sides simply supported (SS) and loaded uniaxially is shown in Figure 21 and described by Equation 2.1.3a.
[image: ].                             (2.1.3a)
Equation 2.1.3(a) is the most frequently used plate buckling equation. It can be shown by the use of the STAGS computer program that this equation is also valid for fixed boundary conditions (FF) on the loaded edges, hich is important since all testing is performed with fixed boundary conditions on the loaded edges to prevent local brooming. Comprehensive testing has shown these equation to be valid except for very narrow plates. Figure 21 shows the comparisons between experiment and classical theory from [2], where the test results are plotted as Nx,i cr/ Nx,cl cr versus the b/t ratios. Notice the discrepancy becomes worse at the low b/t ratios (narrow plates). Thus the equation should be used with caution at b/t ratios less than 35. In Figure 21 the same experimental data has been normalized by the buckling load prediction which includes the effects of transverse shear (Nx,wcr ) from [8]. Note that most available computer buckling programs will not account for this transverse shear effect.
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Figure 21. Uniaxial loading - long plate (a/b > 4) with all sides 
simply supported (SS)

2.1.4. Uniaxial loading - long plate with all sides fixed
The case of a long plate (a/b > 4) with all sides fixed (FF) and loaded uniaxially is shown in Figure 22 and described by Equation 2.1.4(a).
[image: ].                   (2.1.4a)
This equation has not had the comprehensive experimental study as has Equation 2.1.4(a). However, by conjecture the effect of transverse shear for narrow plates would be quite similar to that found for plates with all edges simply supported.

[image: ]
Figure 22. Uniaxial loading - long plate (a/b > 4) with all sides fixed.


2.1.5. Uniaxial loading - long plate with three sides simply supported and one unloaded edge free
Figure 23 shows the case of a long plate (a/b > 4) with three sides simply supported and the remaining unloaded edge free. This plate is uniaxially loaded. This loading situation is described by Equation 2.1.5(a).
[image: ].                                     (2.1.5a)
where b/t must be greater than 20 because of transverse shear effects in narrow plates as discussed in [9].

[image: ]
Figure 23. Uniaxial loading - long plate with three sides simply supported and one unloaded edge free

2.1.6. Uniaxial and biaxial loading - plate with all sides simply supported
Biaxial and uniaxial loading of a simply supported plate is shown in Figure 24, where 1 < a/b < ∞.
The following classical orthotropic buckling equation must be minimized with respect to the longitudinal and transverse half-waves numbers, m and n:
[image: ]               (2.1.6a)
where
[image: ]                                             (2.1.6b)
which is the ratio of applied transverse to longitudinal loading. Accordingly, the corresponding transverse buckling load is
[image: ].                                           (2.1.6c)
For uniaxial loading, let φ = 0.

[image: ]
Figure 24. Uniaxial and biaxial loading - plate with all sides 
simply supported

2.1.7. Uniaxial loading - plate with loaded edges simply supported and unloaded edges fixed
The case of a uniaxially loaded plate (1 < a/b < ∞) with the loaded sides simply supported (SS) and the unloaded sides fixed (FF) can also be considered. For this case, the following classical orthotropic buckling equation must be minimized with respect to the longitudinal half-wave number, m:
[image: ].

2.1.8. Stacking sequence effects in buckling
Methods to accurately predict the stability of laminated plates have been documented. Laminated plate stability can be strongly affected by LSS. However, factors such as plate geometry, boundary conditions and load type each contribute to the relationship between LSS and plate stability. As a result, general rules that define the best LSS for plate stability do not exist. Instead, such relationships must be established for specific structure and loading types. Three examples that illustrate this point will be shown in this section. Two different analysis methods were used in these examples. The first, utilized design equations from [9] and bending stiffnesses as calculated using lamination theory. This method assumed the plate bending behavior to be "specially orthotropic" (D16 and D26 terms were set equal to zero). The second method was a Boeing computer program called Leotha (an enhanced version of Otha, Reference [9] which uses the Galerkin method to solve equations for buckling. This method allowed nonzero D16 and D26 terms.
Figures 23, 24 show plate buckling predictions for the seven LSS used in an earlier example. All plates were assumed to have simply-supported boundary conditions on the four edges. Figures 23, 24 are rectangular plates loaded by uniaxial compression in long and short directions, respectively. Figure 7.1.8(c) shows shear buckling predictions for a square plate. Horizontal dashed lines on Figures 23, 24 represent the results obtained when using the DOD/NASA design equations and assuming no LSS effect (i.e., a homogeneous orthotropic plate). The homogeneous plate assumption results in a buckling load that is roughly an average of the predictions for all LSS shown in the figures.

2.2. Summary
• The buckling strength, or stability, of flat and curved composite skin panels is strongly affected by geometry, stacking sequence, boundary conditions, and loading conditions. In many cases, it may be estimated using existing closed form solutions for orthotropic plates (r/t > 100).

2.3. Reinforced composite materials
The materials of this group are characterized by the presence of reinforcing component in their composition, which are mainly subjected to stretching and bending stresses, during the operation of the products. The reinforcing elements of materials are distinguished by their chemistry and substantial composition, form, sizes, and degree of orientation in the matrix phase.
Typical reinforced composite materials include: reinforced concrete, glass-cement and glass-fiber plastics. Fiber concrete and asbestos-cement can be related to the fiber-reinforced materials. Particle boards and fiberboards, other laminated plates and roll materials also belong to the fiber composites. They are considered in other chapters.
Composite materials, reinforced by continuous fibers, are characterized by the composite interaction of all the constituent elements. For a given orientation of the uniform continuous fiber rigidly coupled with the matrix in one direction, the relationship between the loads, perceived by both components of materials, will be determined by the ratio between their modules of elasticity and the volume content of fibers. The deformation behavior of composites, reinforced by discontinuous fibers, differs from those where unequal tensile stresses act in the segments of fibers along their length: at the ends of segments they are equal to zero, but achieve maximum values in their effective part.
Most building structures are subject to the action of compressive and/or tension stresses. Concrete has a relatively low tensile strength. For complex resistance of compressive and tensile stresses reinforced concrete constitute a composite material solution in which concrete and steel reinforcement are rationally combined and co-work. The combination of concrete and steel in one material is possible due to their high adhesion and similar values of thermal expansion coefficients. Furthermore, in the alkaline environment existing in hardened concrete, steel reinforcement is well protected against corrosion due to the formation of a dense protective concrete cover.
Reinforced concrete is the most commonly used construction material in the modern construction industry. This is due to its high mechanical strength properties, durability and availability of raw materials sources, possibility of production of structures of any forms, to meet various architectural and technological requirements.
Depending on the method of production, reinforced concrete structures are divided into monolithic (placed in the form directly at the construction site), precast (assembled from prefabricated elements) and precast-monolithic (combine precast reinforced concrete elements and monolithic concrete or reinforced concrete).
Precast reinforced concrete structures by comparison with monolithic have a number of advantages. These include: organization of works is simplified on site, the basic operations of reinforcing, placing and hardening of concrete mixture are performed at the plants, duration of construction is shortened and the labour productivity increases because the casting works are excluded, the output of large size elements with enhanceable manufacture readiness is possible.
However the use of precast reinforced concrete elements requires powerful and specialized lifting-transport equipment, using of cut charts of buildings and considerable financial expenses to achieve the desired joint arrangements, and does not always allow the desired architectural expressiveness of buildings and structures.
Experience of monolithic construction shows that it has technical and economic advantages over the precast ones in a number of cases. It allows reduction with respect to non-permanent charges on creation of production base, expense of steel, cement and energy. Monolithic structures allows a substantial promotion of the performance and reliability parameters of buildings. Monolithic construction plays a special role and effect in seismic areas where the metal saving reaches 20%.
However, the efficiency of monolithic reinforced concrete is reduced by considerable specific gravity, the cost and labour content for construction of form work, low degree of mechanization of reinforcing operations, placing and distributing of concrete mixture, and also cost of transporting the concrete mixture.
The question of whether to apply precast or monolithic method in the construction of reinforced concrete is solved only by deciding which has the possibility of satisfying the project requirements of the structures and buildings with respect to time and cost.
Buildings with large length, in relation to their volumes and sizes (channels, dikes, sluices, underwater parts of hydroelectric power plants, retaining walls, etc.) are expedient to build as precast-monolithic process. The most labour consuming aspects are prefabricated in the plants or grounds whilst less labour intensive component elements and their junction are ach.

Questions for self-control
1. What are the thickness effects?
2. What are the edge effects?
3. What are the effects of transverse tensile properties in unidirectional tape?
4. What is the compressive buckling?
5. How are stacking sequence effects in buckling determined?
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Lecture 8
Lecture topic: Thick-section composites

The plan
1. Introduction and definition of thick-section composites
2. Mechanical properties required for thick-section composite. Three-dimensional analysis
2.1. 2-D composite analysis
2.2. 3-D composite analysis 
2.2.1. Unidirectional lamina 3-D properties
2.2.2. Oriented orthotropic laminate 3-D properties
2.3. Experimental property determination
2.3.1. Uniaxial tests

1. Introduction and definition of thick-section composites
Thick-section composites are ones where the effect of geometry (thickness-to-span ratio), material constituents (matrix and fiber stiffness/strength properties), lamination scheme, processing, and service loading exhibit three-dimensional states of stress. For instance, all loadings induce multiaxial stresses into individual plies of composite materials that are made of multi-directional ply laminates (either woven or nonwoven), even though the overall loadings may only be uniaxial. When transverse (through-thickness) stresses and strains occur to a significant degree, they must be accounted for in analysis, design and testing. A significant degree is achieved when these effects contribute to failure (e.g., delamination), excessive deflection or vibration. Frequently, these stresses and strains induce failures that cannot be accurately predicted by conventional two-dimensional analyses for thin laminates. These two- dimensional analyses are usually based on material response data obtained from traditional shear and uniaxial tensile/compressive testing techniques. In thick section composites, where any one of six stress components may significantly contribute to failure, a failure criteria must distinguish between different types of failure modes by associating the contribution of each three-dimensional stress component to a unique mode of failure, be it fiber, matrix or interface dominated. An appropriate failure criteria for thick section composites must consider the following laminate failure modes:

Fiber Dominated              Matrix Dominated           Interface Dominated
. Fiber pull-out .              Transverse cracking .        Interface disbonding
. Fiber tensile failure .      Interlaminar cracking .     Interface delamination
. Fiber micro-buckling .     Intralaminar cracking .       Compressive delamination
. Fiber shear failure .        Edge delamination

For example, thick-section composites made of high stiffness and strength fiber-reinforced plies often exhibit significant transverse shear and transverse normal deformations (the type of three-dimensional stress contributions that are negligibly small in thin laminates). The thickness effect can also be influenced by short wavelength loadings and, in dynamics, high frequency vibrations. These three dimensional effects are considerably more pronounced in composites than in homogeneous isotropic materials due to their inherently high material compliances in the transverse direction relative to the axial fiber direction. Moreover, composite laminates exhibit much lower strength in the transverse direction, and at ply interfaces, making them particularly susceptible to matrix cracking and delamination.
Thick section composites can also be defined from the standpoint of fabrication effects associated with a large number of plies. Process induced stresses can be significant and, therefore, warrant special attention. Fabrication effects of special concern include residual stresses, wrinkling, micro-cracking, exotherm, volatile removal, compaction, machining, and mechanical joining and/or adhesive bonding. To minimize these effects, special resins, processing, tooling, and cure cycles may be necessary. 
In thick laminates, typically two competing objectives are desired, namely, minimization of process induced residual stresses and maximization of production rates (i.e., minimization of the processing time required to achieve complete cure). Fast cure cycle times, involving steep heating and cooling rates, will generally lead to high process induced residual stresses. On the other hand, slowly bringing all part thicknesses up to complete cure simultaneously will minimize, if not eliminate, all process induced residual stresses. This, however, is accomplished at the expense of extended cure cycle times. It is also important to note that process induced residual stresses may in fact be intentionally introduced to cancel, or otherwise mitigate, large superimposed in-service stresses.
In thick laminate design, cure simulation plays a very important role in developing a deeper understanding of the cure kinetics and the degree of cure at any point in the time domain. Such simulation is also able to predict processing stresses even during the cure cycle. This can be an important tool for prediction and preventing in-process part fabrication failures where both stresses and associated strengths are low. The structural analyst needs to know the multiaxial strength and deformation characteristics for efficient thick composite material design. The full potential of thick composites cannot be realized until the material response under multiaxial service loadings can be established. Technical progress in the design, analysis and associated material testing of thick composites remain much less developed than the generally accepted methodology associated with thin composite material characterizations and applications.
The step-by-step method for analysis of thick section composites is illustrated by the flow chart in Figure 25.
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Figure 25. Flowchart illustrating thick-section composites analysis method

2. Mechanical properties required for thick-section composite. Three-dimensional analysis
The purpose of this section is to define the three-dimensional (3-D) orthotropic stiffness properties necessary to conduct a 3-D point stress analysis, and the failure strength and strain allowables required to calculate a margin of safety. This section will:
a) Define the stiffness properties currently used to conduct a conventional two-dimensional (2-D) analysis.
b) Define the additional stiffness properties needed to conduct a three-dimensional (3-D) stress analysis.
c) Define the testing required to experimentally determine the 3-D stiffness properties and the failure strengths and strains for uniaxial loading  and multiaxial loading.
d) Discuss the methodology for predicting laminate stiffness properties through the thickness using the 3-D lamina properties. The symbols and nomenclature used in the handbook apply to 2-D and 3-D composites and utilize 1, 2, 3 for lamina axes and x, y, z for an oriented laminate axis directions.

2.1. 2-D composite analysis
The two-dimensional composite analysis procedures apply when the through the thickness stresses are not significant. For unidirectional laminates that have low stresses in the thickness or 3-direction (σ3 =τ23 =τ13 g, plane stress), the stress-strain relationship is,
[image: ],                                                 (2.1a)
[image: ].                                   (2.1b)
In terms of the engineering elastic constants obtained by simple tests
[image: ].                              (2.1c)
The reciprocity relationships for stiffness is
[image: ].                                                 (2.1d)
For the plane stress two-dimensional analysis, the four independent elastic material properties are:
E1, E2 , G12 , ν12.
In-plane failure stress and strain values can be obtained from the same test used for determining the stiffness as discussed in [1]. 

2.2. 3-D composite analysis 
When the stresses and strains in the thickness direction are significant, (applied values are approaching their allowables) the problem requires a three-dimensional orthotropic stress analysis. A 3-D analysis is frequently necessary as the section thickness of a composite increases or when thin sections have out-of-plane loading (bending moment, lateral pressures, etc.) which results in, for example, interlaminar tensile stresses in a corner radius or interlaminar shear stresses in a beam or plate.

2.2.1. Unidirectional lamina 3-D properties
For the orthotropic unidirectional lamina there are nine independent constants as shown by the following stress-strain relationship:
[image: ]                   (2.2.1a)
or in terms of the engineering constants,
[image: ].          (2.2.1b)
There are three reciprocal relationships that must be satisfied for an orthotropic material. They are
[image: ].                  (2.2.1c)
There are nine independent elastic material properties required for an orthotropic lamina
E1, E2, E3, G12, G13, G23,ν12 , ν13, ν23.
When materials have a different stiffness in tension from in compression, it is common practice to use an average value when the difference is small. If the stiffness difference is significant, use the stiffness (tensile or compressive) that is representative of the application loading.

2.2.2. Oriented orthotropic laminate 3-D properties
The compliance matrix and associated nine elastic constants required to conduct a 3-D analysis are defined in this section and are for a oriented balanced and symmetric laminate loaded in the x, y, or z direction. Most practical composite laminate lay-ups generally are balanced and symmetric to prevent thermal warpage during processing. If the laminate is unbalanced and unsymmetric, or loaded "off-axis" to the principal orthogonal directions, then the matrix is fully populated with the Chentsov's coefficients μ ij,kl and coefficients of mutual influence ηij,i ,η i,ij.
The compliance matrix for the balanced and symmetric laminate loaded in the x, y, or z direction is
[image: ].                       (2.2.2a)
In terms of the effective engineering elastic constants this relationship is,
[image: ].            (2.2.2b)
There are three reciprocal relationships that must be satisfied by the effective laminate stiffnesses. They are,
[image: ].                   (2.2.2c)
There are nine independent effective elastic material constants required for analysis of the oriented laminate,
Ex , Ey , Ez, Gxy, Gxz, Gyz ,νxy ,νxz ,νyz.

2.3. Experimental property determination
The current and most commonly used approach for failure analysis of 2-D composites is to experimentally determine the strength and stiffness values for the unidirectional lamina from simple uniaxial tests and use a failure criterion to account for the various load direction interactions to calculate the margin of safety. These uniaxial tests are defined in [2-4] for 2-D and 3-D composites. Another approach is to conduct multiaxial tests that provide loading in the proper proportions to simulate the actual load applications. The multiaxial testing and methodology are discussed in [2-4].
There are considerable challenges associated with both uniaxial and multiaxial, mechanical testing of thick section composite materials. A partial list of experimental testing considerations is presented below:
− Test system and load introduction.
− Gripping system and fixturing.
− Computer control and interface.
− Adequate displacement control over specimen centroid location.
− Specimen design and optimization.
− Unknown states of stress within thick composites.
− Multiaxial extensometry and other measurement devices and techniques.
− Inclusion and treatment of environmental effects
− Data acquisition and analysis
− Multiaxial yield and failure criteria
− Size effect and scaling law
− Edge effects treatment
− Static and dynamic testing, including fatigue and impact loadings
− Sensitivity to stress concentrations
− NDE of damage

2.3.1. Uniaxial tests
The type of common tests conducted on the unidirectional laminate to obtain the conventional 2-D in-plane tensile, compressive, and shear stiffness, as well as failure strength and strains are summarized in Figures 26 through 28. These tests are also discussed in detail in [2-4]. The additional unidirectional laminate design property tests needed when a 3-D (thick-section) analysis is required are summarized in Figure 29 and described in detail in Figures 30 and 31. Test methods available to obtain these properties are summarized in Table 4. Further test method development is needed for tension and compression testing in the 3 or through-thickness direction.
For oriented laminates, the additional design properties tests needed in addition to the 2-D tests for a 3-D analysis are summarized in Figure 32. The 3-D through the thickness stiffnesses can also be predicted from the unidirectional lamina stiffnesses by the methods discussed in Section “Theoretical Property Determination”. Table 5 summarizes the test methods available for determining 3-D properties for an oriented laminate. Furthermore, test method development is also needed for tension and compression testing in the z-thickness direction similar to the need for unidirectional laminate testing.
An example of representative thick-section composite properties for an intermediate modulus carbon/epoxy material system are presented in Tables 6 and 7 for the unidirectional lamina and [0/90] oriented laminate. The lamina properties were taken from Reference 2.3.1(a) and the [0/90] data were obtained by a Hercules test program from an 80-ply (t=0.59 in., 15mm) fiber-placed, autoclave-cured laminate. 
Tables 5 and 6 identify three uniaxial compressive test methods for testing composites greater than 0.250 inches (6.35 mm) in thickness. Both the David Taylor Research Center (DTRC) and the Alliant Techsystems testing fixtures, which are shown in Figures 33 and 34, respectively, were developed for uniaxial compression testing of thick prismatic columnar shaped composite material specimens. The US Army Research Laboratory - Materials Directorate (ARL) test method utilizes a cubic specimen loaded directly between two steel plates with no associated fixturing. The development of compression data relative to the different material orientations identified in Tables 7 and 8 is accomplished through independent, successive uniaxial load applications. Successive uniaxial compression tests, that consist of one-directional load applications per material orientation, can be undertaken with conventional, medium-to-high capacity load frames. With proper care and specimen fixturing, these tests may also be used for determining unidirectional compressive material strengths and failure characteristics.
The primary feature that both the DTRC and the Alliant Techsystems test fixtures provide is that they have been developed for maintaining proper gripping and alignment of the test specimens as well as providing constraints to minimize any potential specimen end brooming (specimen splitting) under compressive load applications. Any potential onset of apparent, specimen end splitting and fixture-induced test specimen material cracking, may cause significant material strength reductions. Special tabbing as well as associated specimen-tabbing connection detail may be required for some uniaxial compression testing of thick composites.
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Figure 26. Unidirectional laminate in-plane tensile design properties
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Figure 27. Unidirectional laminate in-plane compressive design properties
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Figure 28. Unidirectional laminate in-plane shear design properties
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Figure 29. Unidirectional laminate thickness direction design properties
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Figure 30. Unidirectional laminate design properties for shear thickness direction
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Figure 31. Unidirectional laminate tensile and compressive design properties in thickness direction


Table 5. Test methods available for determining 3-D laminate properties
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Figure 32. Oriented laminate thickness direction design properties


Table 6. Test methods available for determining 3-D lamina properties
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Table 7. Intermediate modulus carbon/epoxy lamina typical 3-D properties
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Table 8. Intermediate modulus carbon/epoxy [03,90] laminate typical 
3-D properties
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Figure 33. Uniaxial thick-section compression test fixture - David Taylor Research Center (DTRC)
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Figure 34. Uniaxial thick-section compression test fixture - Alliant Techsystems Inc.

Questions for self-control
1. What is the thick-section composite?
2. What is the physical meaning of the properties required for thick-section composite? 
3. What are oriented orthotropic laminate 3-D properties?
4. How is the oriented orthotropic laminate calculated?
5. How is 3-D composite analysis performed for thick-section composites?
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Lecture 9
Lecture topic: Deformation of a cylindrical body in the presence of gravity

The plan
1. Strain tensor. Stress tensor. Equation of motion / equilibrium 
1.1. The displacement vector. Lagrangean (material) and Eulerian (spatial) co-ordinates
1.2. Invariants of a tensor. Tensor deviator
1.3. Strain tensor. Stress tensor. Equation of motion / equilibrium 
2. Hooke’s law
2.1. Hooke’s law
2.2. Deformation of a cylindrical body in the presence of gravity. The model
2.3. The equations of equilibrium. Boundary conditions. Simplifying hypothesis
2.4. The final shape of the body

1. Strain tensor. Stress tensor. Equation of motion / equilibrium 
1.1. The displacement vector. Lagrangean (material) and Eulerian (spatial) coordinates
Introduction
That course lectures presents some theoretical problems related to the Mechanics of a Continuum Solid Body, of particular importance to Applied Geomechanics, Geological Engineering and Structural Geology. In most cases, only static aspects are discussed, but some dynamic cases are also presented. 
As a rule, the modern tensorial approach is used. The linear elasticity and the homogeneity of the continuum solid body are almost thoroughly assumed to be valid, but some elements of Rheology are also presented.
In most cases, the semi-inverse method is used to solve the problems. According to it, the solution is supposed to be of a particular form, as a consequence of the simplified hypothesis previously assumed. It is verified that solution checks both the corresponding equations and the boundary conditions. Based on the Uniqueness Theorem of the Linear Elasticity, it follows the assumed particular solution is just the general solution of the problem. In all the cases discussed here, the assumed simplified hypotheses allow one to obtain simple, analytical solutions. At a first glance, the importance of such solutions is minor with respect to the real cases, where mainly the non-homogeneity of the medium plays a great role. However, the analytical solutions are the basis for deriving finite element algorithms, allowing one to model satisfactory the complex real cases. Such examples are also presented. 
The lessons are mainly designed to be used as a part of the course of Mechanics followed by the students in Geophysics at the Geology and Geophysics Faculty, University of Bucharest.


The displacement vector. Lagrangean (material) and Eulerian (spatial) coordinates









Consider an arbitrary material point inside a continuum body, subject to a deformation process. At the initial time , that point has the position vector denoted by , with respect to the origin of a co-ordinate system (Fig. 35). At a time , the new position vector is to be . The difference represents the displacement vector. Taking into account that the components of the vectorare all functions of the components of  , the displacement vector can be written as

.





This represents a Lagrangean (material) description of the deformation process. Here,  are representing the Lagrangean (material) co-ordinates. Alternately, the components of can be seen as functions of the components of the vector. Consequently, the displacement vector can be written as

.



This represents a Eulerian (spatial) description of the deformation process, where are the Eulerian (spatial) co-ordinates. A basic supposition assumed thoroughly in that notes is that the deformation process is a continuous one, i.e. all the components of or are continuous functions together their derivatives with respect to both their spatial co-ordinates or to time. Further conditions are discussed, for example, in ( Ivan 1996). 
The Lagrangean coordinates are usual in the Solid Mechanics, while the Eulerian co-ordinates are commonly used in Fluid Mechanics. However, in the Linear Elasticity, the distinction between these two kinds of co-ordinates is not important, as it will be seen in the next chapters. More details on such aspects can be found in (Aki and Richards 1980; Ranalli 1987).
[image: ]
Figure 35. The continuum deformed body and the displacement vector

1.2. Invariants of a tensor. Tensor deviator
A second order tensor represents mainly a 3x3 matrix. The elements of the tensor are changing according to a certain rule with respect to a change of the co-ordinate system. Such a change with respect to a rotation will be discussed later. For simplicity, only symmetric tensors will be considered. A symmetric tensor is equal to its transpose 



(or). The superscript “t” shows the transposed tensor (matrix).
Let the components of the tensor be real numbers

,


The scalar  and the vector are representing the eigen-value and the eigen-vector respectively of that tensor if

.                                                (1.2a)
It’s easy to see that the eigen-values are not changing with respect to a rotation of the co-ordinates system. 


Suppose now that the eigen-value and the components of the eigen-vector are complex numbers. By taking the complex conjugate (denoted by an asterisk) into (1.2a), it follows

.
Taking into account the symmetry of the tensor, the next inner product is evaluated into two different ways

,                                   (1.2b)
and

             (1.2c)
From (1.2b) and (1.2c) it follows that the eigen-values (and the components of the eigen-vectors) of a symmetric tensor are real numbers.
Eq. (1.2a) can be written as

,
where 1 denotes the unit tensor. From this equation it follows that the next determinant vanishes

.
Hence the eigen-values are the roots of the third degree equation

,                                      (1.2d)
where

                 (1.2e)
With respect to a rotation of the co-ordinates system, the elements of the tensor are generally changing. Because the quantities defined by (1.2e) can also be expressed as functions of the roots of (1.2d), it follows their values are not changing with respect to a rotation. They represent the main invariants of the tensor. The first invariant is the trace of the tensor, while the third one represent just its determinant.
The tensor defined by

,
represents the tensor deviator, having its trace equal to zero. Elementary computations show its second invariant is 

.
That invariant is especially important to define constitutive equation for plasticity.

1.3. Strain tensor. Stress tensor. Equation of motion / equilibrium
By using the spatial coordinates, the strain tensor is defined as (e.g. Beju, Soos and Teodorescu 1977)

.
where “grad” denotes the gradient. In Cartesian co-ordinates, that symmetric tensor has the elements

.












According to the Cauchy’s hypotheses there are two kinds of forces acting at an arbitrary point placed inside a body or on its boundary. The first ones are represented by the mass forces, characterized by a mass density . For the problems discussed in that book, such mass forces are ignored. Or, they are represented by the gravity, when is just the gravitational acceleration . Suppose now a mechanical state of tension (stress) is present inside the deformed body, e.g. as a result of the action of a pair forces . An arbitrary cross section is considered through a certain point of the body, dividing it into a part denoted by  at left and a pert at the right respectively (Fig. 36). A surface element  is considered on the boundary of , having the outer pointing normal vector denoted by . The material points of the boundary of are acting on  by an elementary force . It follows (e.g. Beju, Soos and Teodorescu 1977; Aki and Richards 1980; Ranalli 1987) that the next relation is valid

,

where the tensor  represents the Cauchy stress tensor, spatial co-ordinates being used. According to the Principle of the Kinetic Momentum Balance, stress is a symmetric tensor. It can be shown too that the Principle of Impulse Balance leads to the next vectorial equation of motion /equilibrium 

,                                            (1.3a)


That equation is valid at an arbitrary point inside the body , where is the density and  represents the acceleration. By projecting eq. (1.3a) on the co-ordinates system axes, three scalar equations are obtained.

[image: ]

Figure 36. An imaginary cross section through the deformed body.

2. Hook’s law
2.1. Hook’s law
Neglecting the initial stress (in most cases), it is further assumed a linear relation between the stress and strain tensors, i.e.

,                                                   (2.1a)
or

,

where is a fourth-order tensor. Eq.(a19) represents Hooke’s law. In the usual cases discussed here, an elastic, homogeneous, isotropic medium is considered. Then eq. (2.1a) takes the particular form

.                                   (2.1b)



Here,  denotes the trace of the tensor, is the unit tensor (matrix) and are the elastic coefficients of Lame. Hence


Alternately, Hooke’s law (2.1b) can be reversed to give

,
where the modulus of Young is

                                               (2.1c)
and the transverse contraction coefficient of Poisson is

.                                               (2.1d)
By reversing (2.1c) and (2.1d), it follows

.
The parameter defined by


represents the incompressibility or bulk modulus. For (theoretical) incompressible rocks, that modulus approaches infinity.
Other constitutive equations will be discussed in relation to the rheological bodies.

2.2. Deformation of a cylindrical body in the presence of gravity. The model



An elastic homogeneous isotropic body is considered (Fig. 37). Its initial shape is a right, vertical, very thin cylinder of radius equal to and height equal to .  The base of the body is placed on the horizontal, absolutely rigid, plane. The deformation of the body due to its own weight follows to be studied and the final shape of the body into the final equilibrium state will be found. The approximations of the linear theory are assumed and the variation of the density is ignored. 

The problem is solved by following the next steps:

i) - the equations of equilibrium are used, the unknowns here being the components of the stress tensor ; these equations are processed according to the simplifying hypothesis of the problem;

ii) - by using the reversed Hooke’s law, the equations of equilibrium are processed in order to have only the components of the strain  tensor  as unknowns;

iii) - by using the definition of the strain tensor, the components of the displacement vector  are obtained and the final shape of the body is found.
[image: ]
Figure 37. (a) A vertical cylinder lying on a rigid plane; (b) The final shape of a vertical cross section (solid line) with respect to the initial shape (dashed line) 

2.3. The equations of equilibrium. Boundary conditions. Simplifying hypothesis
A simplified approach can be derived by using cylindrical coordinates. However, the problem here is an introductory one. So these coordinates will be used later, in relation to other problems. The equations of equilibrium in Cartesian coordinates are

.                                  (2.3a)


Here, is the density  and is the gravitational acceleration. The forces acting upon the body are the reaction force of the horizontal plane and the gravity of the cylinder. The boundary conditions are:
-on the lateral surface of the cylinder:

,                         (2.3b)
-on the upper base of the cylinder 

,                            (2.3c)



Here, is the disc of radius equal to , having the centre at the origin of the coordinate system and the boundary denoted by . The outer pointing normal at the lateral surface of the body is a linear combination with variable coefficients of the horizontal unit vectors, i.e.

.

For  eq. (2.3b) becomes

.(2.3d)


The outer pointing normal at the upper base of the body is the unit vector . For , eq. (2.3c) gives 

.
Eq. (2.3d) is satisfied if the stress tensor has the form

.                                        (2.3e)
on the lateral surface of the body.
Because the cylinder is a very thin one, the stress at its inner points is approximately the same one to the stress on the lateral surface. So, it is assumed that eq. (2.3e) holds inside the whole volume of the body. It follows eqs. (2.3a) are identical verified. From eq. (2.3a) it follows that 

.                            (2.3f)
The problem represented by eq. (2.3f) has the next immediate solution

.
The reversed Hooke’s law is

             (2.3g)
Because

,
equations (2.3g) lead to

         (2.3h)
By integrating eq. (2.3h) it follows that

(2.3i)



Hence the displacement field is found if the unknown functions  are finally obtained. Differentiating (2.3i) with respect to and (b13f) with respect to and adding the results, it follows

.
So, using eq. (2.3i) it follows

.
From this equation it follows that

,

where  are two unknown functions, following to be found. Eqs.(b13e) and (2.3i) give

.


The left side of eq. (2.3j) is represented by a function depending on  only, while the right side is a function of . Hence both sides are equal to a constant, i.e.

.                        (2.3j)
It follows that 

.
In a similar manner, eq. (2.3j) gives

.
From eq. (2.3i) it follows that

.

where is a constant. Then

.
For simplicity, material co-ordinates are used to obtain the final expression of the displacement field

. (2.3k)
The first term in eq. (2.3k) is the true displacement, the last one is a translation while the second term is the rigid rotation 

.

2.4. The final shape of the body
a)  The final shape of the upper base

Consider an arbitrary point of co-ordinates equal to . In the initial stage, it is placed on the upper base of the cylinder. Finally, the co-ordinates of the point are

.
Hence

.                            (2.4a)
From eq. (2.4a) it follows that

.

Hence the circle representing the contour of the upper base remains a circle of the same radius. The plane of the  circle is moving downward by a quantity equal to . The surface of the disc representing the upper base of the body is no longer a plane one. It becomes a rotational  parabolic surface  having the equation

.
b) The final shape of the lower base

Consider now an arbitrary point initially placed on the lower base of the body. The point has the co-ordinates equal to . The final co-ordinate of the point are

.
Hence

.                                     (2.4b)
From eq. (2.4b) it follows that

,


i.e. the circle representing the contour of the lower base remains a circle. The new radius is increased by a quantity equal to . The initial horizontal plane of the circle is uplifted by a quantity equal to . The surface of the disc representing the lower base becomes a rotational paraboloid  having the equation

.                             (2.4c)
c) The final shape of the lateral surface

Consider now a point initially placed on a generatrix line of the cylinder. Because of the cylindrical symmetry of the  problem, the point having the initial co-ordinates equal to  is considered. Finally, that point has the position characterized by the co-ordinates

.                         (2.4d)
From (2.4d), it follows that the generatrix remains into the initial vertical plane. Its shape is changed from a straight line segment to a convex parabolic segment, having the equation

.
Observation. On the lower base of the cylinder it is acting the reaction force of the rigid plane, equal to the weight of the body. When the surface of the base is decreasing, approaching the paraboloid of eq. (2.3c), the normal unit  effort (equal to the weight divided by the contact area) is increasing. At a certain moment, its magnitude will exceed a yielding value of the material. Then, Hooke’s law, valid in the elastic domain, will be no longer appropriate here.

Questions for self-control:
1. How are invariants of the tensor determined for mechanics problems?
2. How is the tensor deviator used in solving problems of mechanics?
3. What are the differences between the Lagrangean (material) and Eulerian (spatial) coordinates?
4. What is the algorithm for research of deformation of a cylindrical body in the presence of gravity?
5. How is the simplifying hypothesis formulated?
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Lecture 10
Lecture topic: The buckling of a simply leaning thin plate

The plan
1. The model of a thin elastic plane plate
1.1. The model of a thin elastic plane plate
1.2. The planar state of a plate. The bending state
1.3. Loads acting on the plate
1.4. Odd and even functions for the planar state and for the bending state
1.5. Mean value of a function. Equilibrium equations for thin plates
1.6. Thin plate in the bending state
1.7. Bernoulli’s hypothesis
1.8. Hooke’s law for a thin plate
1.9. The infinite, 1-dimensional (1-D) plate. The flexure of the lithosphere
2. The buckling of a simply leaning thin plate
2.1. Exterior forces on the lateral surface of the plate. Buckling
2.2. The buckling of a simply leaning thin plate
2.3. The infinite extended 1-D plate
2.4. Fourier transforms. Properties
2.5. Solution of the flexure equation by using Fourier transforms
2.6. Finite plates


a) Significance of  and  for the bending state
b) The rectangular plate. Boundary conditions. Levy’s solution
2.7. Vibrations of a plate laying on a viscous substratum
a) The differential equation
b) The rectangular plate with 3 embedded sides

1. The model of a thin elastic plane plate
1.1. The model of a thin elastic plane plate










The thin plane plate is a cylindrical body having an arbitrary horizontal cross section in the initially non-deformed state. Its height, denoted by , is much smaller than the other dimensions (usually, around 7-10 times). The material of the plate is an elastic, homogenous, isotropic one, having the constants denoted by  and, respectively and . The third axis of the co-ordinate system, denoted by , is a vertical one, positive downward. Let be. In the initial, non-deformed state, the plate is a plane horizontal one. The upper face has the equation  and the down face has  respectively. The plane of equation  represents the median plane. After the plate is deformed, it becomes a median surface.

1.2. The planar state of a plate. The bending state
Two particular situation for a deformed plate are considered (Fig. 38).





Figure 38. (a) The non-deformed plate; (b) The plate into a planar state; (c) The plate into a bending state. Here, the median plane is denoted by m.p. while m.s. is the median surface



In the first case, the horizontal components of the displacement vector are symmetrical ones with respect to the median plane, being even functions with respect to the -variable, while the vertical component of the displacement vector is an anti-symmetrical one (odd function with respect to ), i.e.


                                 (1.2a)
From eq. (1.2a) it follows that

,
i.e. the material points placed initially into the median plane have no vertical displacement as a consequence of the deformation of the plate (the median plane holds a horizontal plane one). This kind of deformation represents the planar state of the plate. 


In the second case, the horizontal components of the displacement vector are anti-symmetrical ones (odd functions with respect to ), while the vertical component of the displacement vector is a symmetrical one with respect to the median plane (even function with respect to ), i.e.


By deformation, the material points initially placed into the median plane are displaced on the vertical direction, having no horizontal movement. The median plane becomes a median surface. This state represents the bending state of a plate. 

1.3. Loads acting on the plate






For simplicity, the forces acting on the lateral surface of the plate are neglected. On the upper surface of the plate, having the equation  and the outward pointing normal vector , it is acting the surface force  In the same way, on the down surface, having the equation and the normal vector  , it is acting the surface force . Hence

,
i.e.

.    (1.3a)
Also

,
i.e.

.          (1.3b)
We shell see that the above presented deformation states are compatible only to certain distributions of volume or surface forces applied to the plate.

1.4. Odd and even functions for the planar state and for the bending state

Let  be a function of three variables, supposed to be smooth enough. It can be seen that

.
Let

,    

.
It follows that

.




The function represents the even part of  (with respect to -variable), while the function represents its odd part. It follows that

,

i.e. the even part of the even part is equal to the even part too. A similar relation holds for the odd part. The even part of an odd part (and the odd part of an even part) is vanishing.  For , it follows that

.
Hence, the partial derivative (with respect to a horizontal co-ordinate) of the even part of a certain function is equal to the even part of that derivative. This property holds for the odd part. So,

.
Also,

.
Hence the partial derivative of the even part with respect to the vertical co-ordinate is equal to the odd part of the partial derivative of the function itself with respect to same co-ordinate. In the same way it follows that

.
By using the Hooke’s law and the definition of the strain, it can be resumed that the planar state and the bending state are characterized by the next components:

-for the planar state: - the displacement vector:      ,

                                 - strain tensor: ,

                                 - stress tensor:  .

-for the bending state: - the displacement vector:      ,

                                 - strain tensor: ,

                                 - stress tensor:  .

1.5. Mean value of a function. Equilibrium equations for thin plates



Let an integrable function with respect to -variable. The mean value of computed on the thickness of the plate is denoted by

.                                  (1.5a)

For an odd function , its mean value vanishes, i.e.

,
It follows that

.

For a function depending only on the horizontal coordinates, eq. (1.3b) leads to

.
Differentiating eq. (1.3b) with respect to the horizontal co-ordinates, it follows that:

.
For the vertical derivative, it follows that

.

Consider the function . It follows that

.
Its mean value is

.
Hence


Neglecting the volume forces (the weight of the plate itself, for example), the equilibrium equations for the planar state are

.                             (1.5b)
Let the mean values of the stress components be denoted by

,
Applying the mean value operator to eqs. (1,5b) gives

,
Using eqs. (1.3a) and (1.3b) it follows

.               (1.5c)
Let

.

Multiplying eqs. (1.5b) by  and using again the mean value operator, it follows

.
Hence, using again eqs. (1.3a) and (1.3b),

.            (1.5d)
So, the equilibrium of a thin plate into the planar state leads to eqs. (1.5c) and (1.5d). 
Consider the weight of the plate, the equation of equilibrium for the plate into the bending state are

.


Here, the density of the plate is and the acceleration of gravity is .
Proceeding in a similar manner to above, it follows the equations of equilibrium for the thin plate into a bending state are

.       (1.5e)
Eq. (1.5e) is differentiated with respect to x and eq. (1.5e) is differentiated with respect to y. The results are substituted in eq. (1.5e). Hence

.      (1.5f)

1.6. Thin plane plate in the bending state


The component of the displacement vector is developed in power series with respect to -variable. It follows

                           (1.6a)
For the bending state, the first term in eq. (1.6a) vanishes. Because the thickness of the plate is a small one, only the second term is kept. So the horizontal components of the displacement vector are

.          (1.6b) 
The vertical displacement of the points placed into the median plane is denoted by

,


i.e. the mean surface has the equation . Here,  represents the arrow of the plate.

1.7. Bernoulli’s hypothesis







According to Bernoulli, it is assumed that an arbitrary material segment of the plate, initially perpendicular on the median plane in the non-deformed state, rests perpendicular on the mean surface in the deformed state. Let  a certain point of the plate (not placed in the mean plane) and  its projection on the median plane. So, the segment  is perpendicular on the median plane. After deformation, the material point  is moving at the point having the co-ordinates, while the point  is moving at the point . The horizontal displacements of the points placed in the median plane are vanishing. So, writing the vector along the line, it follows that

.


Expanding in power series the even function with respect to -variable, it follows


Using eq. (1.6b), it follows that

.
Hence the direction is 

.              (1.7a)
The normal vector on the median surface is

.                (1.7b)
Comparing eq. (1.7a)  to eq. (1.7b), the supplemental hypothesis of Bernoulli is satisfied if 

,
i.e., by using eq. (1.6b), the displacement vector has the horizontal components equal to

.       (1.7c) 
From eq. (1.7c), the components of the strain tensor are 

.      (1.7d)
The Laplace operator in horizontal components is denoted by

.
Hence the trace of the strain tensor is 

.                            (1.7e)

1.8. Hooke’s law for a thin plate
By using eqs. (1.7d) and (1.7e) it follows that

.
But

.
Hence

.       (1.8a)
In the same way,

,                      (1.8b)

.     (1.8c)
Substituting eqs. (1.8a) - (1.8c) into eq. (1.5f) it follows the equation of Sophie Germain:

,
where

                              (1.8d)
represents the flexural rigidity of the plate.
So, obtaining the median surface asks someone to solve a bi-harmonic equation, with certain boundary conditions on the upper/ lower faces of the plate. The equation (1.8d) will be solved in same cases of particular importance in real cases.


Exercise. Find the expressions of and  for a thin plate into a bending state.

1.9. The infinite, 1-dimensional (1-D) plate. The flexure of the lithosphere



Consider an infinite extended plate along -co-ordinate. The component  of the displacement vector is equal to zero, and the rest of the components does not depend on -co-ordinate. In this case, the plate is assumed to be in a cylindrical bending state. Neglecting the horizontal loads, eq. (1.8d) becomes

.                                    (1.9a)
For the case presented in Fig. 39 on the upper face of the plate is acting the load P due to the relief and the lithostatic pressure, i.e. 

,


where is the density of the filling sediments (assumed to be homogeneous ones) placed between the reference plane of elevation equal to zero and the upper surface of the plate. On the down face of the plate, it is acting the pressure of the liquid of density equal to ,i.e.

,

where is an unknown constant. Eq. (1.9a) becomes

.

It is assumed that in the absence of the relief (i.e. P=0), the non-deformed plate (i.e.) is in an equilibrium state under the action of its own weight and of the pressure of the liquid, i.e.

.


Figure 39. The flexure of the lithosphere under the action of the relief (P), of the lithostatic pressure L  and of the pressure of the liquid M 

It results the flexure equation of the 1-D plate :

.                            (1.9b)
Let

,
where  is the flexural parameter of the plate. Eq. (1.9b) becomes

.

2. The buckling of a simply leaning thin plate
2.1. Exterior forces on the lateral surface of the plate. Buckling




To derive Sophie Germain equation (1.9a) for the bending state, exterior forces acting on the lateral surface of the plate have been ignored, especially those placed into the median plane. Consider a very thin plate simply leaning like in Fig. 40. The load is absent and the plate is infinite developed in a direction perpendicular on the plane of the figure. An element of the plate having the length equal to unit along that direction is considered too. Letbe the thickness of the plate. The forces per unit length along the above direction are denoted by , being derived from the stress ( positive for compression ) by

.


Figure 40. A plate simply leaning, subject to the action of forces placed into the median plane (a) A lateral view. (b) A view from above.


If the forces are small ones, the plate will be deformed according to a plane state, attempting a final configuration similar to Fig. 41b.  If the forces are above a certain critical value, the plate loses suddenly its equilibrium state, attending a deformation state like Fig. 41a, (or in the contrary sense, i.e. symmetrically with respect to the line of its supports. The displacement field in this case is similar to the cylindrical bending. That phenomenon represents the buckling of the plate. It characterises very thin plates or bars. 




Figure 41. (a) The equilibrium of a buckled plate acted by the forces  and by the reactions of the supports

(b) The equilibrium of a buckled plate acted by a vertical load  and by the reactions of the supports.


(c)The equilibrium of a buckled plate acted by the forces and by a load having the same magnitude but a contrary sense with respect to the load presented in Fig. 41(b).

In order to use the previous results, it is necessary to find when the mechanical state of stress / strain corresponding to the presence of the lateral forces is identical to the mechanical state of stress / strain corresponding to an unknown vertical load  (Fig. 41b). The equilibrium condition for the case shown in Fig.41a is

,
and the equilibrium condition for the case shown in Fig.F4b is

,


where  and   are the reactions of the supports in the above cases. Because the mechanical state of stress is identical in both cases, particularly in the neighbourhood of the supports, the reactions will be the same, i.e.

.
It follows that

.


Hence for the corresponding state of stress/strain, the plate is in an equilibrium state if it is acted by the lateral forces and by a vertical load , in the absence of the supports (Fig. 41c). Consider a plate element having the horizontal length equal to  and the ends denoted by A and B (Fig. 42). 




Figure 42. The equilibrium of a plate element due to the load and to the internal tensions




Because the plate is a thin one, the tangential efforts are neglected. At the point A, it is acting a force (per unit length) denoted by, representing a normal effort, tangent to the plate. The angle between and the horizontal axis is denoted by . At the point B, it is acting the effort , making an angle equal to +d with the horizontal axis. The equilibrium conditions are

                                (2.1a)
For small angles , it follows that

                                    (2.1b)
The first equation in (2.1a) gives

.

Hence has no variation along x-axis, i.e.


The second equation in (2.1a) gives

.
By using (2.1c) and (2.1b) it follows that

.                                          (2.1c)
Hence the forces on the lateral faces of the plate are mechanical equivalent to a vertical load equal to

.
It follows that eq. (2.1a) has the next general form

.                                  (2.1d)

2.2. The buckling of a simply leaning thin plate

Consider the plate in Fig. 40. For simplicity, it is assumed that (i.e. the plate is leaning just at its ends). The buoyancy force and the vertical loads are neglected. Equation (2.1d) becomes

,                                            (2.2a)
together with the next conditions:
-at the end point having x=0: 

             ;                                        (2.2b)
-at the end point having x=a: 

             ;                                          (2.2c)


The equations (2.2a) - (2.2c) has the trivial solution . It follows to find a critical buckling value  in order the system (2.2a) - (2.2c) to have further non-trivial solutions. Successively, equation (2.2a) can be written as

,

  ,                                    (2.2d)

where  are two integration constants, vanishing according to (2.2b) - (2.2c) Hence (2.2d) is

,
having the solution

   .

From (2.2b) it follows that, while from (2.2c) it follows the critical values



The lowest critical value is obtained for .


Exercises.
(1)Perform a study for the buckling of a 1-D plate having an embedded end point, the other being free.
(2)Perform a study for the buckling of a 1-D plate having both end points free. The plate is simply leaning at 1/3 from its length with respect to its left end.
(3)Perform a study of the simply leaning 1-D plate in the presence of the buoyancy force.
(4)Modify the equation of Sophie Germain for the 2-D plate in the presence of lateral forces.
(5)Perform a study for the buckling a 2-D rectangular plate, simply leaning at all its sides.

2.3. The infinite extended 1-D plate
By integrating both sides of eq. (2.1d) it follows

.         (2.3a)

Because  and its derivatives of any order are vanishing at infinite, the first two integrals in (2.3a) are vanishing too. It follows that the area bounded by the median curve (the flexure) and the horizontal x-axis is proportional to the load due to the relief, irrespective the presence of the lateral forces:

.                                  (2.3b)



Let an approximation of the relief be a set of  steps, each one of  height equal to and density equal to , i.e.

.                (2.3c)
Equation (2.3b) becomes

.

Hence the area bounded by the flexural curve and the horizontal axis is a linear combination of the areas approximating the relief. In real cases, the flexural curve can be outlined along a finite interval denoted by , hence an upper bound for the difference of the densities can be obtained as

.
Equation (2.1d) will be solved by using Fourier transforms.


2.4. Fourier transforms. Properties



The direct Fourier transform ( t.F.d. ) of a function is the new function  of variable , defined as

.


The inverse Fourier transform ( t.F.i. ) of a function  is the function  defined as

.








Differentiating both sides of eq. (2.4a) with respect to x, it follows that the t.F.d. of the first derivative  can be obtained by multiplying the the t.F.d. of   by  . Hence the t.F.d. of the derivative  can be obtained by multiplying the t.F.d. of  by . Consider two functions and  of one variable. Their convolution product is 

.
Permuting the integrals, it follows that the direct Fourier transform of the convolution product is the product pf the transforms of both factors of the product, i.e.

.

2.5. Solution of the flexure equation by using Fourier transforms
The solution of eq. (2.1d) is the sum of two terms, a term corresponding to the homogeneous equation and a term corresponding to a particular solution, i.e.

.

A particular solution will be obtained applying the direct Fourier transform to eq. (2.1d) and by using the above presented properties of the Fourier transform

,
i.e.

.                               (2.5a)



It is assumed that the value of the positive constant is small enough. Consider the particular case when the load due to the relief is a load concentrated at the origin of the axes, having the magnitude equal to unit. The direct Fourier transform of this load is equal to unit too. The corresponding solution, denoted by , represents the elastostatic Green function. It allows one to obtain the solution corresponding to an arbitrary load of magnitude equal to. Hence

.                  (2.5b)
It is assumed that the next condition is satisfied 

.
Let

.
But

.
The next result is valid (Rîjic and Gradstein 1955)

.                          (2,5c)
By using (2.5c), the next inverse Fourier transforms are obtained

,

.
By using the property of the derivative, it follows

 .           (2.5d)
In the same way

.             (2.5e)
Subtracting eq. (2.5d) from eq. (2.5e), it follows that

.
Hence

.
Using the above results, it follows after some elementary computations that 

,

,                    (2.5f)


It can be observed that  for  , corresponding to the buckling of the infinite plate in the presence of a lateral compressive stress. From (2.5a) and (2.5b) it follows that

.
Hence the solution for an arbitrary load is the convolution of the load due to the relief and the function given by (2.5f), representing a general property of the Green function:

.
For the approximation of the relief represented by eq. (2.3c), it follows that

.
where

.  
The solution of the homogeneous equation can be immediately derived as

.
Hence the general solution is





It follows to find the unknown coefficients and  in some particular cases. For the infinite plate, the flexure is subject to the next conditions:

.                                           (2.5g)



Hence the coefficients and  are vanishing and the general solution is just the particular solution represented by eq. (2.5g). In the case of  the semi-infinite plate the flexure is subject, for example, to the next conditions:

,

,

,


where  and (positive when acting into a clockwise sense)  are the values of the flexure, that of the second derivative of the flexure and that of the bending moment respectively at the left end of the plate where the origin of the x-axis is selected. It follows


and

   .



A finite plate of variable thickness can be approximated in real cases by a sum of elements having constant thickness and homogeneous elastic properties. To obtain the values of the unknown coefficients and  for each element, proper conditions have to be verified at the ends of each element. A finite element algorithm based on the continuity of the values of the flexure, of its first derivative, of the bending moment and of the share force has been derived by Ivan (1997).

Exercise. Derive the expression of  for a load due to a relief having the equation

,


where  is the amplitude of the relief and  is its wave-length. 

2.6. Finite plates


In the case of the finite plates, the boundary conditions on the contour of the plate are essential ones in order to obtain the values of the integration constants. Some particular, most common cases will analysed in detail. As a consequence, a previous examination of the mean values and  it is necessary.


a) Significance of and for the bending state





According to the definition of the stress tensor elements,  is the projection along -axis of the surface force acting on the surface having the outer pointing normal equal to . Because the elements are even functions, the mean values  are representing share forces, acting like in Fig. 43.





Figure 43. The mean values  (a) and  (b). Both of them are share forces




Similar considerations allow one to conclude that the mean values  and are bending moments, while are torsion moments (Fig. 44).

           

Figure 44. The bending moments M11 (a) and  M22 (b). The torsion moment M12  acting on the side having the outer pointing normal 1 is presented in Fig.4c. A similar torsion moment is acting on the side having the normal 2, but it is not presented in the figure

b) The rectangular plate. Boundary conditions. Lévy ‘s solution



Let consider a rectangular plate having the sides equal to  and  respectively (Fig. 45). Consider, for example, the side AB, having the equation ). Among most commonly used boundary conditions are 
-the embedded side: the flexure of the plate and the derivative of the flexure are both equal to zero

;
-the rotating side: the flexure of the plate and the bending moment are both equal to zero:

,
i.e.:

.                                (2.6a)
-the free side: the share force, the bending moment and the torsion moment are all equal to zero.



Figure 45. The rectangular plate

Similar conditions can be derived for plates of arbitrary shape.
As an example, consider the rectangular plate with two opposite articulated sides. Neglecting the lateral forces and the gravity, it follows to solve the simplified equation of the flexure

,                                           (2.6b)

with the boundary conditions (2.6a) written for  and a 2-D Laplace operator. Consider a particular solution having the form

,                                 (2.6c)
it follows that

.
Hence

.
It follows the conditions (2.6a) are fulfilled for the two opposite articulated sides. Substituting (2.6c) into (2.6b), it follows that

.           (2.6d)



The function  is expanded in Fourier series and the coefficients are identified. Both sides of eq. (2.6d) are multiplied by   The result is integrated on the interval , taking into account that

.
Hence

   (2.6e)
In the beginning, the next homogeneous equation is solved, i.e.


The characteristic equation is

,
hence the solution of the homogeneous equation is

,   (2.6f)

where  are some constants following to be obtained from the boundary conditions on the other two (non-articulated) sides of the plate. The general solution of equation (2.6e) is the sum of (2.6f) and a particular solution. The last one can be obtained by the usual techniques (e.g. Cauchy method). The above approach is due to Lévy.

2.7. Vibrations of a plate laying on a viscous substratum
In this chapter, the flexure is considered as a function of both spatial co-ordinates and time. The corresponding differential equation is derived, being solved in the case of the 2-dimensional plate.
a) The differential equation


As usually, a co-ordinate system is used having the horizontal axes x and y. The -axis is positive downward, having the unit vector denoted by . By applying the mean-value operator, the equations of motion for the bending state are

,     (2.7a)

,     (2.7b)
and

.          (2.7c)
It will be assumed that Bernoulli’s hypothesis is valid for all time. Hence the displacement vector has the elements

.   (2.7d)
 Substituting (2.7d) into (2.7a) - (2.7c) it follows after elementary computations that

.
As usually, the horizontal loads for the upper face of the plate are neglected, the surface forces being assumed to be 

,                      (2.7e)


where  is the density of the filling sediments and is the load. The last term in (2.7e) is an inertial one. For the material below the plate, the next constitutive equation is assumed

,




where  is a reference pressure and is the density of the material below the plate. The Lamé elastic coefficients are  and  is the viscosity. Hence the loads on the lower face of the plate are

.




Again, a correction due to the compressive horizontal stresses  acting along the x- and y-axes respectively at the ends of the plate follows to be considered further. The reference pressure is selected in order the flexure  to vanish in the absence of the load . Finally, a generalisation of the Sophie Germain equation for a time dependent flexure is obtained as

.  (2.7f)


b) The rectangular plate with 3 embedded sides


For usual materials , hence the second term on the left side of (2.7f) vanishes. Because the load is mainly represented by the relief, having the elevations much smaller then the thickness of the plate, the inertial term is usually negligible on the right side of (2.7f). Let  be the equation of the flexure corresponding to the state of equilibrium in the presence of the load, i.e.

.
Consider the difference   

.
It follows that

,   (2.7g)

where  denotes the velocity of P-waves through the plate.

Consider the lengths of the sides are  respectively. Suppose the plate is embedded according to

,                           (2.7h)
at any time. A particular solution satisfying (2.7h) is

   (2.7i)
Substituting (2.7i) in (2.7g) it follows the modes are damped harmonic, i.e.

,                                    (2.7j)

For  the periods are

 
and the decay constants are

,                                    (2.7k)
where


and

.
According to (2.7d), the modes are both toroidal and spheroidal.
For each mode, a critical viscosity can be found from

,
i.e.

.                                      (2.7l)
For values of viscosity less than the critical value (2.7l), the motion of the plate is represented by a sum of damped oscillations. The decay constants are obtained from (2.7k) and the periods are

.



For values of viscosity greater than the critical value, the motion of the plate is aperiodic and the characteristic roots of (2.7k) are and . It follows that for large scale of times, the solution of (2.7j) behaves like , where the decay constant is

,                               (2.7m)
all the other terms being faster attenuated. In many real applications, an approximate value of (2.7n) is

.                         (2.7n)


With regard to (2.7i), the decay constant (2.7m) or (2.7n) can be obtained as the ratio between the amplitude of the velocity and the amplitude of . By using eq.(2.7k), that ratio can be used to estimate the mean viscosity of the material below the plate

.
A numerical application with respect to the Moesian Platform is presented in [5].

Questions for self-control:
1. What are the main equations that should be taken into account when modeling a thin elastic plane plate?
2. What is the physical meaning of the odd and even functions for the planar state and for the bending state?
3. What is the general form of the solution of the flexure equation by using Fourier transforms?
4. How is Levy’s solution calculated?
5. What is the differential equation for vibrations of a plate laying on a viscous substratum?
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