Қазақстан Республикасы білім және ғылым министрлігі
Е.А. Бөкетов атындағы Қарағанды университеті
Математика және ақпараттық технологиялар факультеті
Профессор Т.Ғ.Мұстафин атындағы алгебра, математикалық логика және геометрия кафедрасы
Есенбаева Гульсим Ахмадиевна
«Сыну механикасы, негіздері және қосымшалары (ағылшынша)» пәні бойынша
Дәрістер курсы
білім беру бағдарламасы: «7М05402 - Механика»
Қарағанды 2023

The Ministry of Education and Science of the Republic of Kazakhstan

Karaganda University of the name of academician E.A. Buketov
The Faculty of Mathematics and Information Technologies

The Chair of Algebra, Mathematical Logic and Geometry 
of the name of Professor Mustafin T.G.

Yessenbayeva Gulsim Akhmadievna

Course of lectures
on the discipline «Fracture mechanics, basics and applications 
(in English)»
Educational program: «7M05402 - Mechanics»

Karaganda 2023
Lecture 1
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1.1. Preface
The consequences of fracture can be minor or they can be costly, deadly or both. Fracture mechanics poses and finds answers to questions related to designing components and processes against fracture. The driving forces in fracture mechanics are the loads at the crack tip, expressed in terms of the stress intensity factor and the energy available to the crack tip. The resistance of the material to fracture is expressed in terms of fracture toughness. Criteria for fracture can be stated as a balance of the crack tip loads and the material’s fracture resistance, or “toughness.”
Engineering design methodology requires that the designer should be aware of the possible modes of failure of a component or structure, so that the design process can be carried out with a view to ensuring the avoidance of all possible, relevant, failure modes. In some respects, one of the major skills in designing is being able to correctly identify the most probable failure mechanism.

Almost all the classic failure stories from industry relate to machines or objects where the designer got it wrong, sometimes with tragic consequences.
A classification of the more common failure modes known for structural components can be made as follows:

• Failure by elastic instability (buckling);

• Failure by excessively large elastic deformations (jamming);

• Failure by gross plastic deformation (yielding);

• Failure by tensile instability (necking);

• Failure by fast fracture (cracking, snapping);

• Failure by environmental corrosion (rusting, rotting).

Buckling is typically a risk for long, slender members in compression. The phenomenon of buckling originates from small misalignments in the application of the load when the elastic restoring forces in the slender member are no longer sufficient to keep the system in equilibrium. This condition usually results in instability with catastrophic deformations until the bent column yields or fractures, or its ends touch:
Jamming can occur when, as a result of an oversight in design, excessively large elastic deflections take place. It is a risk in the design of engines, for example, when clearances between components are very small.

Avoidance of both types of failure can be ensured by geometric specifications. Currently much research is being carried out on the development of high modulus materials, often containing fibres, to allow high stresses to be applied without the development of high strain values. The reality is that in practice, the available ratios of Young’s Modulus to density (E/ρ) do not offer the design engineer a broad spectrum from which to choose.

Yielding. The engineer understands this term to mean both localised yielding and failure by plastic collapse. A failure by yielding can occur with general yielding or with the onset of limited plastic deformation in the component in question.

From Knott Fundamentals of Fracture Mechanics: “A body is said to have undergone general yielding when it is no longer possible to trace a path, across the load bearing section, through elastically deformed material only.”

In the past, design would invariably aim to avoid the onset of any yielding. Current design methods can use localised yielding or plastic collapse as the limiting criteria in a certain design situations.

Plastic collapse can be used as a safety feature in emergency situations, for example, in the choice of Armco crash barriers for use as the central reservation of a motorway or around race tracks: large plastic deformation of the barrier is desirable so that the large forces experienced in an accident can be absorbed with less risk to the drivers.

Plastic deformation can also be desired and induced in certain situations in order to create beneficial residual stresses or to blunt sharp defects.

Examples:

• autofrettaging of tubes;

• proof testing of pressure vessels beyond yielding.

In the design against failure by plastic collapse, the engineer is no longer restricted to a range of geometries or a limited choice of elastic constants. A wide choice of materials with various yield strengths is available. 

Necking. A risk for tension members subjected to a soft (load-controlled) loading. Necking can only happen as a result of a gross overload and depends on the interaction of material properties with the structure’s geometry and the applied stress system.

Assuming that problems with buckling/jamming and necking can be prevented by design of the structural member and by limiting tensile stresses then the failure mode to guard against is yielding.

In order to design against necking failures, design codes have been developed and the application of safety factors ensures that necking failure is highly unlikely. However, the economic imperative of the last fifty years has led to attempts to use higher stresses for a given geometrical configuration requiring materials of higher uniaxial strength. The development of these high strength materials and their efficient usage has rendered structures prone to failure by an alternative mode of failure: namely fast fracture or cracking.

Cracking. Progressive separation of a structure into two pieces by the creation of new surface area. Fast fracture is the unstable propagation of a crack in a structure and is almost invariably produced by applied stresses apparently less than the design stress calculated with the appropriate design code. The resulting catastrophic nature of these failures led to the development of Fracture Mechanics. These failures were often described by the term brittle, applied in the macro sense rather than as a description of the micromechanisms of crack extension.

A brittle fracture is one in which the onset of unstable crack propagation is produced by an applied stress less than the general yield stress of the uncracked ligament remaining when instability first occurs.

These failures are usually associated with gross stress concentrations in large components or structures and with loading systems which don’t relax the applied stresses as the crack extends. Although in steels these fractures happen at low temperatures and/or in thick sections, for both aluminium and steel they can also take place in very thin sheets. 
Fracture mechanics is the study of mechanical behavior of cracked materials subjected to an applied load. Essentially, fracture mechanics deals with the irreversible process of rupture due to nucleation and growth of cracks. 

The formation of cracks may be a complex fracture process, which strongly depends on the microstructure of a particular crystalline or amorphous solid, applied loading, and environment. The microstructure plays a very important role in a fracture process due to dislocation motion, precipitates, inclusions, grain size, and type of phases making up the microstructure. All these microstructural features are imperfections and can act as fracture nuclei under unfavorable conditions. 

For instance, Brittle Fracture is a low-energy process (low energy dissipation), which may lead to catastrophic failure without warning since the crack velocity is normally high. Therefore, little or no plastic deformation may be involved before separation of the solid. 

On the other hand, Ductile Fracture is a high-energy process in which a large amount of energy dissipation is associated with a large plastic deformation before crack instability occurs. Consequently, slow crack growth occurs due to strain hardening at the crack tip region. 
Fracture mechanics of engineering materials deals with fracture of solids undergoing large deformation (ductile materials) and/or fracture (brittle material) when subjected to extreme loading. The analysis of a solid responding to loads is concerned partly with microscopic mechanisms of fracture, establishing fracture criteria, and predicting the fracture stress from a macroscopic approach. However, it is important that the undergraduate understands the concept of modeling, problem solving, and interpreting the meaning of mathematical solution for a particular engineering problem or situation.
1.2. Notable Fractures
Things break everyday. This you know already. Usually a fracture is annoying and perhaps a little costly to deal with, a broken toy, or a cracked automobile windshield. However, fractures can also be deadly and involve enormous expense.

The deHavilland Comet, placed in service in 1952, was the world’s first jetliner. Pressurized and flying at high speed and altitude, the Comet cut 4 hours from the New York to London trip. Tragically two Comets disintegrated in flight in January and April 1954 killing dozens. Tests and studies of fragments of the second of the crashed jetliners showed that a crack had developed due to metal fatigue near the radio direction finding aerial window, situated in the front of the cabin roof. This crack eventually grew into the window, effectively creating a very large crack that failed rapidly, leading to the crashes. A great deal was learned in the investigations that followed these incidents and the Comet was redesigned to be structurally more robust. However, in the four years required for the Comet to be re-certified for flight, Boeing released its 707 taking the lead in the market for jet transports.

However, Boeing was not to be spared from fatigue fracture problems. In 1988 the roof of the forward cabin of a 737 tore away during flight, killing a flight attendant and injuring many passengers. The cause was multiple fatigue cracks linking up to form a large, catastrophic crack. The multitude of cycles accumulated on this aircraft, corrosion and maintenance problems all played a role in this accident. Furthermore, the accident challenged the notion that fracture was well understood and under control in modern structures.

This understanding was again challenged on 17 November 1994, 4:31am PST, when a magnitude 6.7 earthquake shook the Northridge Valley in Southern California for 15 seconds. The damage was severe: 57 people lost their lives, 1500 were injured and 12,500 buildings were damaged. That damage occurred is no surprise, however, what did surprise structural engineers were the fractures in many welded beam-column joints in steel framed buildings. These joints, designed to absorb energy by plastic deformation, instead fractured in an almost brittle fashion. Due to such fractures over 150 buildings were damaged. In one the damage was so severe the building was demolished; others had to be evacuated.
The German Intercityexpress, or ICE, offers high speed, comfortable train travel  at speeds up to 280 km/hr. On 5 June 1998 ICE 884, traveling on the Munich-Hamburg route at a speed of 250 km/hr crashed near the village of Eschede resulting in 100 deaths, 100 injuries, the destruction of a bridge, the track, the train and interruption of train service. The cause and course of the accident are described by Esslinger et al. 

The tire detached from the wheel, was dragged along, jammed under the floor of the carriage and then got stuck in the tongue of a switch. By this the switch was toggled to the neighboring track and the hind part of the train redirected there. This led to derailment and collision of the derailed train part with the pylon of a road bridge leading over the tracks. The collapsing bridge buried a part of the train.

The cause of the tire detachment was a fatigue crack, see Fig. 1.1 that grew from the inner rim of the tire. The crack grew slowly by fatigue to about 80% of the cross sectional area of the tire before the final, rapid fracture. 
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Fig. 1.1. Fracture surface of broken ICE train wheel tire 

On 2 November 2007 a Missouri Air National Guard F-15C broke in two in flight. The pilot ejected but sustained injuries. Subsequent investigations revealed a manufacturing defect in which a fuselage longeron was machined to below its design thickness. The thinned longeron stressed to higher than planned levels, failed by initiation and growth of a fatigue crack that grew to a critical length before final, rapid fracture. The entire US Air Force fleet of F15s was, at a time of war, grounded for some time following the 2 November accident. Newer F15Es were quickly returned to flight but older F15A-D models were returned to flight only after inspection of each vehicle, over 180 of which showed the manufacturing defect and 9 of which contained similar longeron cracks. Repair was estimated at $250,000 per vehicle. The repair costs and large number of aircraft with the same defect called into question the continued use of the F15A-D fleet.
1.3. Basic Fracture Mechanics Concepts

It should be clear that fracture is a significant problem in the industrialized world and that a theoretical and practical basis for design against fracture is needed. Fracture mechanics deals essentially with the following questions: Given a structure or machine component with a preexisting crack or crack-like flaw what loads can the structure take as a function of the crack size, configuration and time? Given a load and environmental history how fast and in what directions will a crack grow in a structure? At what time or number of cycles of loading will the crack propagate catastrophically? What size crack can be allowed to exist in component and still operate it safely? This last question may surprise you. Perhaps you would say that any crack, any flaw, is not allowable in the jet aircraft that carries your family across the ocean. Unfortunately such an aircraft does not exist.We must face reality square-on, recognize that flaws exist and to the very best of our ability, design our structures, monitoring protocols and maintenance procedures to ensure a low probability of failure by fracture. Doing so will save lives. Ignoring fracture could, in addition to the loss of life, bring down an entire corporation or industry and the livelihoods of thousands.

Fracture can and is being approached from many scales, For example at the atomic level, fracture can be viewed as the separation of atomic planes. At the scale of the microstructure of the material, the grains in a polycrystalline material, or the fibers in a composite, the fracture of the material around these features can be studied to determine the physical nature of failure. From the engineering point of view, the material is treated as a continuum and through the analysis of stress, strain and energy we seek to predict and control fracture. The continuum approach is the focus of this book.

Consider the example shown in Fig. 1.2.
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Fig. 1.2. Edge crack in a plate in tension. Mode I stress intensity factor,

KI = 1.12σa[image: image4.png]Jra




Here a sheet with initial crack length a is loaded with tensile stress σa. Near the crack tip the stress is elevated above the average stress of σa. Due to this high stress the material near the crack tip will undergo large strains and will eventually fail, allowing the crack to propagate ahead. If thematerial were to behave linearly elastically right up to the point of fracture then (as we will show in the next chapter) the stress ahead of the crack will be
[image: image6.png]


                                                      (1.1)

where r is the distance from the crack tip and KI is related to the applied stress by 
KI = 1.12σa      [image: image8.png]Jra




The material will yield or otherwise inelastically and nonlinearly deform to eliminate the predicted infinite stress, thus very near the crack tip. Eq. (1.1) is not an accurate description of the stress field. However, if rp, the size of the zone near the crack tip in which inelastic deformation occurs is small relative to a, the stress outside of this “yielding zone” will be well approximated by Eq. (1.1). This is the so called “small scale yielding” (SSY) assumption in fracture.
1.4. Small Scale Yielding Model. Fracture Criteria 

In the small scale yielding model the stresses in an annulus r > rp and  [image: image10.png]r<
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given with respect to polar coordinates, where f  is a universal function of θ. All of the loading and geometry of loading are reflected in the single quantity KI , known as the “stress intensity factor”. That the distribution of stress around the crack tip has a universal spatial distribution with magnitude given by KI is the so called “autonomy” principle. This allows fracture test results obtained from a 0.2 m laboratory test specimen to be applied to a 10 m large structure.
The size of the inelastic zone at the crack tip (“plastic zone”, or “process zone”) will be shown to scale as 

rp ∼ 
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where σ0 is the yield strength of the material (the tensile stress at which inelastic deformation begins to occur).

Rice describes the SSY yielding assumption and its role in fracture mechanics as: The utility of elastic stress analysis lies in the similarity of near crack tip stress distributions for all configurations. Presuming deviations from linearity to occur only over a region that is small compared to geometrical dimensions (small scale yielding), the elastic stressintensity factor controls the local deformation field. This is in the sense that two bodies with cracks of different size and with different manners of load application, but which are otherwise identical, will have identical near crack tip deformation fields if the stress intensity factors are equal. Thus, the stress intensity factor uniquely characterizes the load sensed at the crack tip in situations of small scale yielding, and criteria governing crack extension for a given local load rate, temperature, environments, sheet thickness (where plane stress fracture modes are possible) and history of prior deformation may be expressed in terms of stress intensity factors.
Fracture criteria
In SSY all crack tip deformation and failure is driven solely by KI . A criterion for crack growth can be derived from this observation. The material has a characteristic resistance to fracture known as the “fracture toughness”, KIC. When the applied loading is such that

KI ≥ KIC
then the crack will grow.
An alternate criterion for fracture is based on G, the “energy release rate”, or energy dissipated per unit area of new fracture surface. As the crack grows in a component, work done on the component by the externally applied forces and strain energy stored in the part prior to fracture provide energy to the crack. The physical mechanisms of energy dissipation due to fracture include plastic deformation ahead of the crack in metals, microcracking in ceramics, fiber pull out and other frictional processes in composite materials, and surface energy in all materials. The surface energy component, is generally small relative to the other components, except in glassy materials. In the energy approach the criterion for fracture can be given as

G ≥ GC,
where G is the available energy release rate and GC is the toughness of the materials, or energy per area required to propagate a crack.
It will be shown that in SSY the energy release rate, G is related to the stress intensity factor, KI , by 
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where E’ = E for plane stress and E’ = E/(1−ν2) for plane strain and E is the Young’s modulus of the material and ν the Poisson’s ratio. Thus in SSY the stress intensity factor and energy release rate criteria are the same. This is not so, however when SSY is violated, which is generally the case for tearing fracture of ductile metals.
When the loading is applied cyclically and with KI <KIC the material ahead of the crack will undergo fatigue deformation and eventually failure. It has been found that the crack will grow a small amount on each cycle of loading. The rate of crack growth typically scales as 
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 where ΔK is the difference between the maximum and minimum stress intensity factors due to the cyclic loads, and n is an exponent that must be experimentally determined. Typically 2 ≤ n ≤ 4. Other situations in which a crack will grow slowly include stress corrosion cracking where under a constant KI <KIC the crack can slowly advance as bonds are broken at the crack tip due to the interaction of stress with the corrosive agents. For example, you may have observed a crack slowly growing in an automobile windshield; water is known to catalyze fracture in glass.
Fracture unit conversions
1.0 ksi√in = 1.099 MPa√m.
1.5. Exercises
1. Consider an aluminum plate loaded in tension. Suppose that the fracture toughness of this alloy is KIC ≈ 60 MPa√m and the yield stress is σy = 400 MPa.

(a) If a tensile stress of σa = 200 MPa is applied what is the critical crack length, i.e. at what value of a is KI = KIC? 
(b) At this critical crack length, estimate the size of the crack tip plastic zone using the relation [image: image16.png]


 Are the SSY conditions satisfied in this case?

2. Glass is a strong but very brittle material. Typically KIC ≈1 MPa√m for glass. If the plate described above was made of glass and loaded in tension with σa = 200 MPa, what would the critical crack length be?
1.6. Linear Elastic Stress Analysis of 2D Cracks. Notation

To begin to understand fracture of materials, one must first know the stress and deformation fields near the tips of cracks. Thus the first topic in fracture mechanics is the linear elastic analysis of crack tip fields. The solutions derived here will be seen to violate the assumptions upon which linear elasticity theory is grounded. Nonetheless by invoking common sense principles, the theory of linear elastic fracture mechanics (LEFM) will be shown to provide the groundwork for many practical applications of fracture.
Unless otherwise stated all elastic analysis will be for static problems in linear elastic, isotropic, homogeneous materials in which no body forces act.

A two dimensional domain will be assumed to lie in the (x1, x2) plane and will be referred to as A, with boundary curve C or Γ and outward unit normal vector n. In a Cartesian coordinate system with basis vectors {e1, e2}, n = n1e1 + n2e2, or n = nαeα using the summation convention and the convention that Greek indices span 1, 2. An area integral will be denoted by ʃA (·)dA. A line integral is denoted by 
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. New fracture surface area is referred to as B·da, where B is the thickness of the 3D body that is idealized as 2D.

A three-dimensional domain will referred to as V with surface S and outward unit normal n. The portion of the boundary over which tractions are prescribed is St . The portion over which displacements are prescribed is 
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. In a Cartesian coordinate system with basis vectors {e1, e2, e3}, n = niei where Latin indices span 1, 2, 3. A volume integral is denoted by 
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The stress tensor will be referred to as σ with components σij. Strain is γ with components γij . Traction t = σn, or ti = σijnj .
Although real-world fracture problems involve crack surfaces that are curved and involve stress fields that are three dimensional, the only simple analyses that can be performed are for two-dimensional idealizations. Solutions to these idealizations provide the basic structure of the crack tip fields.
Consider the arbitrary fracture surface shown in Fig. 1.3.
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Fig. 1.3. Crack front, or line, for an arbitrarily shaped crack surface in a solid. At any point along the crack line a local coordinate system may be defined as shown
At any point on the crack front a local coordinate system can be drawn with the x3 axis tangential to the crack front, the x2 axis orthogonal to the crack surface and x1 orthogonal to the crack front. A polar coordinate system (r, θ) can be formed in the (x1, x2) plane. An observer who moves toward the crack tip along a path such that x3 is constant will eventually be so close to the crack line front that the crack front appears to be straight and the crack surface flat. In such a case the three dimensional fracture problem at this point reduces to a two-dimensional one. The effects of the external loading and of the geometry of the problem are felt only through the magnitude and directions of the stress fields at the crack tip.
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2.1. Modes of Fracture. Mode III Field 

At the crack tip the stress field can be broken up into three components, called Mode I, Mode II and Mode III, as sketched in Fig. 2.1, 
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Fig. 2.1. Modes of fracture

Think of this as representing the state of stress for a cube of material surrounding part of a crack tip. The actual crack may have a mix of Mode-I,II,III loadings and thismix may vary along the crack front. The tractions on the front and back faces of Mode-III cube are not shown.
Mode I causes the crack to open orthogonal to the local fracture surface and results in tension or compressive stresses on surfaces that lie on the line θ = 0 and that have normal vector n = e2. Mode II causes the crack surfaces to slide relative to each other in the x1 direction and results in shear stresses in the x2 direction ahead of the crack. Mode-III causes the crack surface to slide relative to each other in the x3 direction and results in shear stresses in the x3 direction ahead of the crack.

With the idealization discussed above the solution of the crack tip fields can be broken down into three problems. Modes I and II are found by the solution of either a plane stress or plane strain problem and Mode III by the solution of an anti-plane shear problem.
Mode III field
In many solid mechanics problems the anti-plane shear problem is the simplest to solve. This is also the case for fracture mechanics, thus we begin with this problem. 

Anti-plane shear is an idealization in which the displacement field is given by 

u = w(x1, x2)e3.

With this displacement field, the stress-strain relations are
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 .                                                 (2.1)

The field equations of linear elasticity reduce to

∇2w = 0                                                       (2.2)

on A , with either traction boundary conditions,

μ∇w·n = σ3αnα = μw,α nα = 
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(x1, x2)                            (2.3)

or displacement boundary conditions,

w(x1,w2) = w∗(x1, x2)                                           (2.4)

on C .

The anti-plane shear crack problem can be solved in two ways. In the first approach only the asymptotic fields near the crack tip are found. In the second, the entire stress field is found. Both solutions are given below.

2.2. Asymptotic Mode III Field

The geometry of the asymptotic problem is sketched in Fig. 2.2. 
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Fig. 2.2. Semi-infinite crack in an infinite body 
For clarity the crack is depicted with a small, but finite opening angle, actual problem is for a crack with no opening angle. An infinitely sharp, semi-infinite crack in an infinite body is assumed to lie along the x1 axis. The crack surfaces are traction free.

This problem is best solved using polar coordinates, (r, θ). The field equation in polar coordinates is

∇2w = w,rr +
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 w,θθ = 0,                                   (2.5)

and the traction free boundary conditions become

w,θ (r, θ =±π) = 0.                                           (2.6)
Try to form a separable solution, w(r, θ) = R(r)T (θ). Substituting into Eq. (2.5) and separating the r and θ dependent parts,
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 ,                                   (2.7)

where λ is a scalar. If the RHS of Eq. (2.7) is −λ2 or 0 a trivial solution is obtained. Thus the only relevant case is when the RHS = λ2. In this case the following two differential equations are obtained

Tʹ + λ2T = 0,                                                 (2.8)

r2Rʺ + rRʹ − λ2R = 0.                                        (2.9)

The first has the solution

T (θ) = Acos λθ +B sin λθ.                                    (2.10)

The second has the solution

R(r) = r±λ.                                               (2.11)

The boundary conditions, w,θ (r, θ = ±π) = 0 become R(r)Tʹ(±π) = 0. This leads to the pair of equations

λ(−Asinλπ + B cosλπ) = 0,                                      (2.12)

λ(A sinλπ + B cosλπ) = 0.                                       (2.13)

Adding and subtracting these equations leads to two sets of solutions

Bλcosλπ = 0, ⇒ λ = 0,λ=± 1/2,±3/2, . . . ,                       (2.14)

Aλsinλπ = 0, ⇒ λ = 0,λ=±1,±2, . . .                           (2.15)

Thus the solution can be written as a series of terms. If λ = 0, then set A = A0. Since λ = 0 corresponds to rigid body motion, set B = 0 when λ = 0 since it just adds to the A0 term. If λ=±1/2,±3/2,, then from Eq. (2.12) A = 0. If λ=±1,±2, then B=0.

Assembling the terms yields
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Noting that the stress field in polar coordinates is given by

σ3r = μ∂w/∂r,     σ3θ = μ∂w/r∂θ,                                 (2.17)

Eq. (2.12) predicts that the stress field is singular, i.e. the stress becomes infinitely large as r →0. Naturally this will also mean that the strain becomes infinite at the crack tip thus violating the small strain, linear theory of elasticity upon which the result is based.

Various arguments are traditionally used to restrict the terms in Eq. (2.12) to n ≥ 0 resulting in a maximum stress singularity of σ ∼ r−1/2.

One argument is that the strain energy in a finite region must be bounded. In anti-plane shear the strain energy density is 
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. If w ∼ rλ, then W ∼ r2λ−2. The strain energy in a circular region of radius R surrounding the crack tip is
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Thus λ is restricted to λ ≥ 0 for finite energy. From Eq. (2.12), 2λ = n, or n + 1/2, thus if λ ≥ 0 then we must restrict the series solution to n ≥ 0.

A second argument is that the displacement must be bounded, which as with energy argument restricts the series to n ≥ 0.

However, both of the above arguments assume the impossible, that the theory of linear elasticity is valid all the way to the crack tip despite the singular stresses. Even with the restriction that n ≥ 0 the stress field is singular, thus since no material can sustain infinite stresses, there must exist a region surrounding the crack tip where the material yields or otherwise deforms nonlinearly in a way that relieves the stress singularity. If we don’t claim that Eq. (2.12) must apply all the way to the crack tip, then outside of the crack tip nonlinear zone the energy and displacement will be finite for any order of singularity thus admitting terms with n < 0. Treating the crack tip nonlinear zone as a hole (an extreme model for material yielding in which the material’s strength has dropped to zero) of radius ρ, Hui and Ruina [1] show that at any fixed, non-zero distance from the crack tip, the coefficients of terms with stresses more singular than r−1/2 go to zero as ρ/a→0 where a is the crack length or other characteristic in-plane dimension such as the width of a test specimen or structural component. This result is in agreement with the restrictions placed on the crack tip fields by the energy and displacement arguments, thus in what follows the stress field is restricted to be no more singular than σ ∼ r−1/2. But note that in real-world problems in which the crack tip nonlinear zone is finite and ρ/a = 0, the stress field outside the nonlinear zone will have terms more singular than r−1/2. Further details of this calculation are given in Sect. 7.3 as a prototype model for the effects of crack tip plasticity on the stress fields.

Based on the above arguments, and neglecting crack tip nonlinearities, all terms in the displacement series solution with negative powers of r are eliminated, leaving as the first four terms:

w(r, θ) = A0 + B0r1/2 sinθ/2+A1r cos θ +B2r3/2 sin3θ/2+…        (2.18)

Since the problem is a traction boundary value problem, the solution contains a rigid body motion term, A0.

The stress field in polar coordinates is calculated by substituting Eq. (2.18) into Eq. (2.17), yielding

σ3r = B0μ
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1

 r−1/2 sinθ/2+A1μcos θ +B2μ
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r 1/2 sin3θ/2+…,     (2.19)

σ3θ = B0μ
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 r−1/2 cosθ/2−A1μsin θ +B2μ
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r 1/2 cos3θ/2+…       (2.20)

Note that the stress field has a characteristic r −1/2 singularity. It will be shown that this singularity occurs for the Mode I and Mode II problems as well.

As r →0 the r −1/2 term becomes much larger than the other terms in the series and the crack tip stress field is determined completely by B0, the amplitude of the singular term. By convention the amplitude of the crack tip singularity is called the Mode III stress intensity factor, KIII , and is defined as
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Substituting Eq. (2.20) into the above, B0 can be written as 
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. Using the language of stress intensity factors, the first three terms of the series solution for the displacement and stress fields can be written as
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and
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The stress intensity factor, KIII is not determined from this analysis. In general KIII will depend linearly on the applied loads and will also depend on the specific geometry of the cracked body and on the distribution of loads. There are a number approaches to calculating the stress intensity factor, many of which will be discussed later in this book.

2.3. Full Field for Finite Crack in an Infinite Body. Complex Variables Formulation of Anti-Plane Shear

A crack that is small compared to the plate dimension and whose shortest ligament from the crack to the outer plate boundary is much larger than the crack can be approximated as a finite crack in an infinite plate. If, in addition, the spatial variation of the stress field is not large, such a problem may be modeled as a crack of length 2a loaded by uniform shear stresses, σ31 = 0, σ32 = τ∞, Fig. 2.3.
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Fig. 2.3. Finite crack of length 2a in an infinite body under uniform anti-plane shear loading in the far field

Complex variables formulation of anti-plane shear
To simplify the notation the following definitions are made: τα = σ3α,  γα = 2γ3α.

Let χ be a stress function such that

τ1 =−∂χ/∂x2,    τ2 = ∂χ/∂x1.                                  (2.24)

From the strain-displacement relations γα = w,α. Thus γ1,2 = w,12 and γ2,1 = w,21 from which the compatibility relation

γ1,2 = γ2,1                                                     (2.25)

is obtained. Using the stress strain relations, τα = μγα, and the stress functions yields μγ1,2 = −χ,22 and μγ2,1 = χ,11. Substituting this into the compatibility equation yields −χ,22 = χ,11 or

∇2χ = 0.                                                      (2.26)

Define a new, complex function using χ as the real part and w as the imaginary part,

h(z) = χ + iμw                                                  (2.27)

where z = x1 + ix2. It is easily verified that χ and w satisfy the Cauchy-Riemann equations. Furthermore both χ and w are harmonic, i.e. ∇2χ = 0 and ∇2w = 0, thus h is an analytic function. Recall that the derivative of an analytic function, f = u + iv is given by fʹ = u,1+iv1 = v,2−iu,2. Applying this rule to h yields hʹ = χ,1+iμw,1. Using the definition of the stress function and the stress-strain law it is seen that hʹ can be written as

hʹ(z) = τ2(z) +iτ1(z) ≡ τ,                                         (2.28)

where τ is called the complex stress.

A complex normal vector can also be defined, n ≡ n1 + in2. The product of τ and n is τn = τ2n1 − τ1n2 + i(τ1n1 + τ2n2). Thus, comparing this expression to Eq. (2.3), the traction boundary conditions can be written as

Im[τ (z)n(z)] = t∗(z)                                               (2.29)

on C .

2.4. Solution to the Problem
The problem to be solved is outlined in Fig. 2.4. A finite crack of length 2a lies along the x1 axis. Far away from the crack a uniform shear stress field is applied, τ1= 0, τ2 = τ∞, or in terms of the complex stress, τ = τ∞ +i0. The crack surfaces are traction free, i.e. Re[τ] = τ2 = 0 on −a ≤ x1 ≤ a, x2 = 0.

This problem can be solved by analogy to the solution for fluid flow around a flat plate. In the fluid problem the flow velocity v is given by [image: image44.png]


 where F A(z2−a2)1/2. With the fluid velocity analogous to the stress, try a solution of the form

h(z) = A(z2 − a2)1/2.                                               (2.30)

It is easily shown that for z ≠ ±a this function is analytic, thus the governing pde for anti-plane shear will be satisfied. All that remains is to check if the boundary conditions are satisfied. With the above h, the complex stress is

τ = hʹ(z) = Az/(z2 −a2)1/2 .                                           (2.31)

As z→∞, τ →A, thus to satisfy the far-field boundary condition A = τ∞.

To check if the crack tip is traction free note that in reference to Fig. 2.4 

z −a = r1eiθ1 and z +a = r2eiθ2 .
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Fig. 2.4. Finite, antiplane-shear crack in an infinite body. 
θ1 is discontinuous along z = x1, x1 ≥ a. θ2 is discontinuous along z = x1, x1 ≥−a

Thus 

z2 − a2 = r1r2ei(θ1+θ2).
On the top crack surface, x2 = 0+, −a ≤ x1 ≤ a, θ1 = π and θ2 = 0, thus

z2 −a2 = r1r2ei(π+0) = −r1r2 =−a2+x1 2.

Thus on this surface the complex stress is 
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The traction free boundary condition on the top crack surface is Im[τn] = 0 where n=i, thus the boundary condition can be written as Re[τ] = 0. Since the complex stress on the top fracture surface has only an imaginary part, the traction free boundary condition is shown to be satisfied.

On the bottom crack surface, x2 = 0−, −a ≤ x1 ≤ a, θ1 = π and θ2 = 2π, thus 

z2 − a2 = r1r2ei(π+2π) =−r1r2 =−a2 + x12
and again the stress has no real part, thus showing that the traction free boundary conditions will be satisfied.

To summarize we have the following displacement and stress fields
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,                                        (2.32)
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Your intuition will tell you that near the crack tip this solution should give the same result as Eq. (2.23). To show that this is so, the stress field is analyzed near the right crack tip, z → a. Note that z2 − a2 = (z + a)(z − a). Setting 
z ≈ a, z2−a2≈(z−a)(2a), hence near the right hand crack tip [image: image52.png]


. Writing z −a = r1eiθ1 , and relabeling θ1 = θ the stress can be written as 
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                  (2.34)

Comparing the above to Eq. (2.23) it is verified that near the crack tip the two stress fields are the same.

Note that unlike the asymptotic problem, the stress field in this problem is completely determined and the stress intensity factor can be determined. Recall the definition of the Mode-III stress intensity factor, noting that τ2 is simply a shorthand notation for σ3, and that r in the asymptotic problem is the same as r1 in the finite crack problem, from Eq. (2.34)
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.                                    (2.35)

Thus it is seen that the stress intensity factor scales as the applied load (τ∞) and the square root of the crack length (a). As other problems are discussed it will be seen that such scaling arises again and again.

This scaling could have been deduced directly from the dimensions of stress intensity factor which are stress·length1/2 or force/length3/2. Since in this problem the only quantities are the applied stress and the crack length, the only way to combine them to produce the correct dimension for stress intensity factor is τ∞a1/2. See the exercises for additional examples.

Note as well that having the complete solution in hand one can check how close to the crack must one be for the asymptotic solution to be a good description of the actual stress fields. Taking the full solution, Eq. (2.33) to the asymptotic solution, Eq. (2.34) it can be shown, see exercises, that the asymptotic solution is valid in a region near the crack tips of r ≤ a/10.

2.5. Mode I and Mode II Fields. Review of Plane Stress and Plane Strain Field Equations

As with the Mode III field, the Mode I and Mode II problems can be solved either by asymptotic analysis or through the solution to a specific boundary value problem such as a finite crack in an infinite plate. However, as in the analysis above for the Mode III crack, the near crack tip stress fields are the same in each case. Thus the approach of calculating only the asymptotic stress fields will be taken here, following the analysis of Williams.

The Mode-I and Mode-II problems are sketched in Fig. 2.1. The coordinate system and geometry are the same as the Mode-III asymptotic problem, Fig. 2.2. Plane stress and plane strain are assumed.

Review of plane stress and plane strain field equations. Plane strain
The plane strain assumption is that u3 = 0 and uα = uα(x1, x2). This assumption is appropriate for plane problems in which the loading is all in the x1, x2 plane and for bodies in which the thickness (x3 direction) is much greater than the in-plane (x1,x2) dimensions. The reader can refer to an textbook on linear elasticity theory for the derivations of the following results:

γαβ = ½ (uα,β +uβ,α),

γαβ = (1+ ν)/E (σαβ − νσγγ δαβ ),

σαβ,β = 0,   σ33 = νσγγ .
Plane stress
The plane stress assumption is that σ33 = 0 and that uα = uα(x1, x2). This assumption is appropriate for plane problems in bodies that are thin relative to their inplane dimensions. For example, the fields for crack in a plate of thin sheet metal loaded in tension could be well approximated by a plane stress solution. The straindisplacement and equilibrium equations are the same as for plane strain. The stressstrain law can be written as
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Stress function

To solve for the stress field one approach is to define and then solve for the stress function, Φ. In Cartesian coordinates the stresses are related to Φ(x1, x2) by

σ11 = Φ,22 ,                                                    (2.36)

σ22 = Φ,11 ,                                                    (2.37)

σ12 = −Φ,12 .                                                   (2.38)
In polar coordinates the stress is related to Φ(r, θ) by

σθθ = Φ,rr ,                                                    (2.39)

σrr = 1/r Φ,r + 1/r2 Φ,θθ ,                                          (2.40)

σrθ = −(1/r Φ,θ),r .                                              (2.41)

It is readily shown that stresses derived from such a stress function satisfy the equilibrium equations. Requiring the stresses to satisfy compatibility requires that Φ satisfies the biharmonic equation

∇4Φ = 0.                                                        (2.42)
In polar coordinates this can be written as 

∇4Φ =∇2(∇2Φ), 

∇2Φ = Φ,rr + 1/r Φ,r +1/r2 Φ,θθ .
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Lecture 3

Complex Variables Method for Mode I and Mode II Cracks. Full Stress Field for Mode-I Crack 

Lecture plan

3.1. Asymptotic Mode I Field. Stress Field

3.2. Displacement Field. Asymptotic Mode II Field

3.3. Complex Variables Method for Mode I and Mode II Cracks. General Solution for Internal Crack with Applied Tractions 

3.4. Full Stress Field for Mode-I Crack in an Infinite Plate

3.5. Stress Intensity Factor Under Remote Shear Loading. Stress Intensity Factors for Cracks Loaded with Tractions

3.1. Asymptotic Mode I Field. Stress Field
The asymptotic crack problem is the same as that shown in Fig. 2.2. The traction free boundary conditions, t = 0 on θ =±π require that σθθ = σrθ = 0 on θ =±π. In terms of the stress function the boundary conditions are Φ,rr = 0 and (1/r Φ,θ),r = 0 on θ=±π.

Following Williams’s approach consider a solution of the form
Φ(r, θ) = rλ+2[Acos λθ +B cos(λ +2)θ]+r λ+2[C sin λθ +Dsin(λ +2)θ].     (3.1)
Note that one could start from a more basic approach. For example the general solution to the biharmonic equation in polar coordinates, found in 1899 by Michell and given in Timoshenko and Goodier could be used as a starting point. Only certain terms of this result, corresponding to those used byWilliams, will be needed to satisfy the boundary conditions of the crack problem.

It will be noted that the first two terms of Eq. (3.1) are symmetric with respect to the crack line and that the second two are anti-symmetric with respect to the crack. It will be shown that these correspond to the solutions of the Mode-I and Mode-II problems respectively. Let us consider for now, only the Mode-I solution. The boundary condition Φ,rr = 0 on ±π (normal component of traction) yields
Φ,rr |π = (λ +2)(λ +1)rλ[Acosλπ + B cos(λ + 2)π] = 0.

Noting that cos(λπ + 2π) = cosλπ, the above requires (for a nontrivial solution) that

(λ +2)(λ + 1)(A +B)cosλπ = 0.                                (3.2)

The requirement that the shear component of traction is zero, yields

(1/r Φ,θ),r|π  = (λ +1)rλ[−Aλsinλπ −B(λ +2) sin(λπ +2π)] = 0.

This leads to

sinλπ[Aλ +B(λ +2)].                                            (3.3)
If the stress function is Φ ∼  λ+2, then the stress will be σ ∼ rλ, and since stress and strain are proportional to the first derivatives of the displacement, the displacement fields will be u ∼  λ+1,λ ≠ −1 or u ∼ ln r, λ=−1. As in the anti-plane shear problem, a reasonable assumption is that the displacements at the crack tip will be finite. This will restrict the solution to λ>−1.

To satisfy Eqs. (3.2) and (3.3) requires that
cosλπ = 0   ⇒   λ=−1/2, 1/2, 3/2,… , B =−λA/(λ+ 2),

or

sinλπ = 0 ⇒ λ = 0, 1, 2,… , B =−A.
Taking the first three terms of the solution, for λ=−1/2, B−1/2 = 1/3 A−1/2, for λ = 0, B0=−A0 and for λ = 1/2, B1/2 =−1/5 A1/2. Thus the stress function is

Φ(r, θ) = r3/2A−1/2[cosθ/2+ 1/3 cos3θ/2]+ r2A0[1 −cos 2θ]+

+r5/2A1/2[cosθ/2− 1/5 cos5θ/2]+ H.O.T.                              (3.4)
Taking the derivative Φ,rr , the “hoop stress”, σθθ is

σθθ = 3/4 A−1/2r−1/2[cosθ/2+ 1/3 cos3θ/2]+ 2A0[1−cos 2θ]+

+ ¼  1/2 r1/2[15 cosθ/2 − 3 cos 5θ/2] +H.O.T.
As in the anti-plane shear problem, the crack tip stress field is infinite with a 1/√r singularity. The strength of this singularity is given by the “Mode-I” stress

intensity factor, KI. By definition,
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.                     (3.5)
Replacing A−1/2 by KI 2π the stress function can be written as
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                                          (3.6)

Taking derivatives of the stress function, the stress field can be written as
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                         (3.7)
3.2. Displacement Field. Asymptotic Mode II Field
Finding the displacement field can be a more difficult problem than finding the stress field. One approach is to calculate the strains using the stress-strain laws, and then integrate the strain-displacement relations to determine the displacement fields. Williams used the approach of starting from the solution of Coker and Filon in which it is shown that the displacement components in polar coordinates are related to the stress function by
2μur =−Φ,r +(1 −ν)rΨ,θ ,                                          (3.8)

2μuθ =−1rΦ,θ +(1− ν)r2Ψ,r                                        (3.9)

where the displacement potential, Ψ is related to the stress function by

∇2Φ = (rΨ,θ ),r ,                                                  (3.10)
μ is the shear modulus, and ν = ν for plane strain and ν = ν/(1+ν) for plane stress. 

As above, the (Mode-I) stress function is a power series in r. Assume that the displacement potential can also we written as a power series, thus we have 

Φ(r, θ) = rλ+2[Acos λθ +B cos(λ +2)θ],                             (3.11)

Ψ(r,θ) = rm[a1 cosmθ +a2 sinmθ].                                 (3.12)
Evaluating the derivatives of Eq. (3.11) and substituting into Eq. (3.10) yields a1=0, a2 = 4A/λ and m = λ. Thus the terms of the Mode-I displacement potential are

Ψ = rλ 4A/λ sin λθ.                                                (3.13)
Taking only the first term of the series (corresponding to λ=−1/2), we have
Φ = A−1/2 r 3/2[cosθ/2+ 1/3 cos3θ/2],                                  (3.14)

Ψ = 8A 1/2  r−1/2 sinθ/2.                                          (3.15)

Substituting into Eq. (3.8) and replacing A−1/2 by KI /√2π yields
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.              (3.16)
The shape of the crack under load is a parabola, as can be found by considering the opening displacement of the crack, u2(r,±π)=−uθ (r,±π):
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  ,                          (3.17)
where Eʹ = E for plane stress and Eʹ = E/(1−ν2) for plane strain.
Asymptotic mode II field

The details of the Mode II solution will not be given as the steps are identical to those taken for the Mode I solution. The resulting stress and displacement fields are expressed in terms of the Mode-II stress intensity factor, KII , defined as
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.                                  (3.18)
The first term of the stress field is given by
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The displacement field is given by 
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                  (3.20)
3.3. Complex Variables Method for Mode I and Mode II Cracks. General Solution for Internal Crack with Applied Tractions 

To determine the full stress field for a finite Mode-I or Mode-II crack we will need to use the method of complex variables. The solution we develop will allows us to find the stress and displacement fields as well as the stress intensity factors for any loading of a finite crack in an infinite plate. We consider a crack of length 2a lying along x2= 0, as shown in Fig. 2.4.

Following Hellan, the biharmonic equation ∇4Φ = 0, is solved by
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where φ and ψ are analytic functions of z = x1 +ix2. The stresses are given by
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The displacements can be found from
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where κ = 3−4ν for plane strain and κ = (3− ν)/(1 +ν) for plane stress.
The fracture problems can be broken up into Mode-I (symmetric) and Mode-II (anti-symmetric) problems. To simplify the calculations the results above can be specialized to the two cases using the Westergaard approach.
Westergaard approach for mode-I

For the Mode-I case, along x2 = 0, σ12 = 0, which can be enforced by setting ψʺ=−zφʺ. In this case ψʹ =−zφʹ +φ +const. and the stresses can be written as
σ11 = Reφʹ −x2 Imφʺ,

σ22 = Reφʹ +x2 Imφʺ,

σ12 =−x2 Reφʺ.                                            (3.27)
The displacements are
2μu1 = (κ −1)/2 Reφ − x2 Imφʹ,

2μu2 = (κ +1)/2 Imφ −x2 Reφʹ.                                (3.28)
Westergaard approach for mode-II

For Mode-II, along x2 = 0, σ22 = 0 which can be enforced by setting ψʺ=−2φʹ−zφʺ. In this case ψʹ =−φ −zφʹ + const. The stresses are 

σ11 = 2Reφʹ − x2 Imφʺ,

σ22 = x2 Imφʺ,

σ12 =−Imφʹ − x2 Reφʺ.                                           (3.29)

The displacements are

2μu1 = (κ +1)/2 Reφ − x2 Imφʹ,

2μu2 = (κ −1)/2 Imφ − x2 Reφʹ.                              (3.30)
General solution for internal crack with applied tractions 
If the crack surfaces have traction loading  
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 on the top surface and equal but opposite tractions on the bottom surface, as shown in Fig. 3.1. Sedov gives the following general solutions for 
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Fig. 3.1. Traction on crack face

For Mode-I, 
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For Mode-II,
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3.4. Full Stress Field for Mode-I Crack in an Infinite Plate
The stress and displacement fields for a finite crack subject to uniform tension loading, 
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 can now be calculated using the above method. A superposition approach is taken as sketched in Fig. 3.2. 
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Fig. 3.2. Crack of length 2a in an infinite plate with far field stress 
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Problem can be solved by superposition of uniform stress and crack in plate with no far field loading but with crack face pressures equal to 
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For the crack face loading part of the problem,
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Evaluating this integral yields 
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which can be integrated to yield 
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Superposing the uniform far-field stress with the stress given by the stress functions, Eq. (3.27), yields 

[image: image103.wmf]f

f

s

¢

¢

-

¢

=

Im

Re

2

1

x

,
and


[image: image104.wmf]f

s

¢

¢

-

=

Re

2

12

x

.
Substituting in 
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Evaluating the stresses along 
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Note that along the crack line, for 
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Fig. 2.8 Stress fields for finite crack in an infinite plate under tension. Stress nérmalized by (G4
coordinates normalized by a, from Eq. (2.78)
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Fig. 3.3. Stress fields for finite crack in an infinite plate under tension
Stress normalized by 
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, coordinates normalized by a, from Eq. (3.36).
We can determine the stress intensity factor by examining the solution near one of the crack tips. Let
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Using the definition of stress intensity factor, 
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The opening displacement along the crack line can be found using Eq. (3.28) with 
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3.5. Stress Intensity Factor Under Remote Shear Loading. Stress Intensity Factors for Cracks Loaded with Tractions

Similarly it can be shown that for a crack subject to remote stresses, 
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 that the Mode-II stress intensity factor is
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Stress intensity factors for cracks loaded with tractions 
We can develop equations for the stress intensity factors by focusing on the stresses near one crack tip. At the right hand crack tip, as 
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Using 
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Using the definition of stress intensity factor as above and making the substitution 
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Similarly, 
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Lecture 4
Asymptotic Modes I and II Fields Derived from Full Field Solution. 

Three-Dimensional Cracks 

Lecture plan

4.1. Asymptotic Modes I and II Fields Derived from Full Field Solution

4.2. Stress Intensity Factors for Semi-Infinite Crack. Some Comments

4.3. Three-Dimensional Cracks

4.4. Exercises 

4.5. Energy Flows in Elastic Fracture. Prescribed Loads and Displacements

4.6. Elastic Strain Energy. Energy Release Rate, G
4.1. Asymptotic Modes I and II Fields Derived from Full Field Solution
Asymptotic mode I field derived from full field solution 
From Eqs. (3.43) and (3.41), as 
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Making the substitution
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Thus Eqs. (4.1) can be written as 
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(4.2)

Substituting the above into Eq. (3.27), and using 
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Using the identity can be written as 
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(4.3) 

The stress 
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s

 is the same but with a change in the sign of the second term, 
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(4.4)
In the same manner the shear stress is found to be 
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(4.5)
The asymptotic stress function, Eq. (4.1) can be integrated, yielding 
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(4.6)
Substituting Eq. (4.6) and Eq. (4.1) into Eqs. (3.28) we find (using 
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 as an example) 
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Collecting terms and using the identities 


[image: image155.wmf]2

cos

2

sin

2

sin

q

q

q

=


and 

[image: image156.wmf]q

q

cos

1

2

cos

2

2

+

=


the displacement can be written as


[image: image157.wmf]).

cos

(

2

sin

2

2

2

q

q

p

m

-

=

k

r

K

u

I

                                 



(4.7)

Similarly 
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Asymptotic mode II field derived from full field solution
Following similar procedures the Mode-II fields can be derived in Cartesian coordinates, resulting in the stress field,
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with displacements
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4.2. Stress Intensity Factors for Semi-Infinite Crack. Some Comments
Consider a semi-infinite crack, Fig. 2.1, loaded with tractions over a region near the crack tip. In this case, in Eq. (3.43) [image: image164.png]let —a— —, a+t— 2a



, and transform coordinates by
[image: image165.png]



so that
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                                 (4.11)

Similarly,

[image: image169.png]


                                       (4.12)

Some comments

How do we know that the solutions chosen above correspond to “Mode-I” and “Mode-II” as illustrated in Fig. 2.1. Perhaps the best manner to see this is to consider the displacement fields along the crack faces. Analyzing the Mode-I displacement field, Eq. (3.16), the reader can see that the relative motion of the crack faces is only in the [image: image171.png]


 direction, i.e. there is no relative sliding of the crack faces. Analyzing the Mode-II displacement field, Eq. (3.20) the reader will see that the crack faces do not open up, and that the top and bottom crack faces slide relative to each other. The lack of crack opening in Mode-II brings up questions regarding the effect of crack face friction on the growth of cracks loaded in Mode-II. Note also that if [image: image173.png]K, <0



 , Eq. (3.19) tell us that the crack faces will interpenetrate. As this is physically impossible it tells us that in such a case the crack faces will no longer be traction free, but will push against each other and effectively it will be as if there is no crack present. This would differ however, if in the unloaded state the crack had a finite opening, arising (for example) from corrosion or other effects.

Close enough to the crack tip the stress and displacement fields are completely determined by the values of [image: image175.png]


, [image: image177.png]


 and [image: image179.png]


. The various methods for determining these values in laboratory and real-world applications will be discussed later in this book.

What will happen if a crack is loaded in a way that both Mode-I and Mode-II are present? What if Mode-I, Mode-II and Mode-III are all three present? The crack tip stresses will be a superposition of the solutions above. The relative values of [image: image181.png]


, [image: image183.png]


 and [image: image185.png]


. will depend on the loading and on the geometry of the crack and of the cracked body.

4.3. Three-Dimensional Cracks
Of course we do not live in a 2D world. So what will be different in 3D? As a start consider the simple problem of an edge crack in a plate under tension as shown in Fig. 4.1. 
[image: image186.png]



Fig. 4.1. Three-dimensional edge cracked plate loaded in tension 

The crack front is straight through the thickness of the plate. The stress field details for this problem were studied using a multi-grid, 3D finite element analysis. This is a pure mode-I problem. The results show that the in-plane stresses, [image: image188.png]


,[image: image190.png]


 and [image: image192.png]


 are nearly constant through the thickness with the normal stresses dropping off by approximately 25% at the free surfaces. Thus the 2D stress fields provide an accurate description of the 3D problem.

However the out-of-plane stress, [image: image194.png]


 has considerable variation through the thickness. This is to be expected. In the center of the plate, very near the crack tip, the free surfaces appear to be infinitely far away relative to the distance to the crack front and thus it is expected that the stress state will be plane-strain in which the out-of-plane normal strain and stress are
[image: image195.png]Va3 =0




and

[image: image197.png]033 = V(035 + 033)



.
At the free surfaces plane stress conditions are expected with normal stress σ33 and normal strain
[image: image199.png]Y3z = V(Y11 + V22)



.

Note that in the plane stress solution since [image: image201.png]Vaz



  will be singular, the out-of-plane displacement, u3 would be infinite as [image: image203.png]


 ! Not a physically realistic result. The variation of [image: image205.png]


 through the thickness along a line perpendicular to the plate and located [image: image207.png]45°



to the [image: image209.png]


 axis at different distances to the crack tip is shown in Fig. 4.2. 
The results show that in the center of the plate, veryclose to the crack tip, the stress field is plane strain. Further away from the crack, r≈0.33B the field is plane stress. Very close to the crack tip plane strain predominates except in a boundary layer near the free surfaces.
[image: image210.png]1/B=.022
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Fig. 4.2. Degree of plane strain through the plate thickness

Fig. 4.2. Plots are for a line perpendicular to the plate located at θ = 45◦ and distances r/B = 0.022, 0.066, 0.155, 0.331 from the crack tip. x3/B = 0 is the plate center. x3/B = 0.5 is the free surface. Beyond r ≈ 0.33B the field is plane stress. 
What will the stresses be at the crack line for real cracks in three dimensional objects? The stresses will be given by a superposition of the Mode-I, Mode-II and Mode-III fields with the values of [image: image212.png]


, [image: image214.png]


 and [image: image216.png]


. varying at different locations along the crack line. For example, consider the penny shaped crack of radius a shown in Fig. 4.3 subject to tension of [image: image218.png]


 at an angle of [image: image220.png]


 to the crack surface. 
[image: image221.png]



Fig. 4.3. Circular crack of radius a subject to uniform far field loading, σ∞ at an angle of β to the crack surface

In the far-field, [image: image223.png]


, [image: image225.png]


, [image: image227.png]0., sin 8 cos B




. All other stress components are zero.
In this case the stress intensity factors are
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At what point would the crack first begin to grow? And once growing, how would the fracture surface evolve? Such questions are still the topic of active research. To start to understand what will happen in such cases we need to study the energy flows in fracture and to address criteria for fracture. 
4.4. Exercises

1. Transform the Mode-III asymptotic stress field given in Eq. (2.23) into Cartesian coordinates using the appropriate coordinate transformation.

2. Using the procedure outlined in the lecture 2 determine the first term of the stress field for a crack of finite opening angle[image: image233.png]


. For what angle is the field no longer singular? Can you explain this on physical grounds?

3. Compare the asymptotic Mode-III crack tip field, Eq. (2.34) to the full-field solution Eq. (2.33) by plotting contours of the error incurred by approximatingthe full solution by the asymptotic solution. At approximately what distance from the crack tip does the error become greater than 10%?

4. Perform the same calculation as above for Mode-I, i.e. compare the error incurred by approximating the full-field solution for finite crack in tension with the asymptotic Mode-I field.

5. Consider a finite, anti-plane shear crack in an infinite body. Suppose that thecrack is loaded by two equal and opposite line loads, [image: image235.png]


, acting on the center of the crack, as shown in Fig. 4.4. 
[image: image236.png]



Fig. 4.4. Finite, anti-plane shear crack in an infinite body with line loads, 
±P [F/L] applied
Using dimensional considerations determine how [image: image238.png]


 scales with the load and crack length. Provide an intuitive explanation for this result.

6. Show that the stress function solution given in Eq. (3.1) satisfies the biharmonic equation.

7. Transform the stress field given in Eq. (3.7) into Cartesian components and verify that the Williams eigenfunction solution and the asymptotic complex variables solution, Eqs. (4.3) – (4.5) yield the same results. Show that the [image: image240.png]


 term corresponds to a constant stress parallel to the crack. This stress will play an important role in crack path stability and crack tip plasticity.

8. Determine the next two terms in the series solution for the Mode-I displacement field, Eq. (3.16).

9. Determine the next term in the series solution for the anti-symmetric stress field. Is there an equivalent to the constant stress term of magnitude [image: image242.png]


 found in the symmetric field? Why or why not?

10. Verify Eq. (3.44).

11. Using the complex variables method calculate the asymptotic Mode II stressand displacement fields.

12. Yet another way to find the asymptotic crack tip stress fields is to start with astress function in the form of a Laurent series in z, i.e.

[image: image244.png]¢ =X A2



.

(a) Using the above as a starting point in the Westergaard approach for Mode-I, calculate the first two terms [image: image246.png](r{,r")



 in the asymptotic stress field. 
(b) Do the same for the Mode-II problem.
13. Verify the integration of Eq. (3.33) leading to Eq. (3.32).

14. Verify that the stress function in Eq. (3.21) satisfies the biharmonic equation.

15. Verify Eq. (3.24) for the stress components [image: image248.png]g



.

4.5. Energy Flows in Elastic Fracture. Prescribed Loads and Displacements
An alternative approach to understanding fracture is to look not to the stress fields but to the flow of energy into and out of an object that is susceptible to fracture. In this chapter the energy required for fracture will be considered and the connection between the energy flows and the crack tip stresses will be made. This connection also provides a powerful tool for the determination of stress intensity factors. Note that, except where noted, the energy approach to fracture is the same whether the material is linear or nonlinearly elastic.

Generalized force and displacement
To deal in general with the forces, displacements and energy flows in a solid body one would write all quantities in terms of volume and surface integrals. To simplify the notation, allowing us to concentrate on the fundamental ideas equivalent point forces and displacements will be defined. With this approach we need not consider the details of the loading and of the geometry. Two cases are considered. The first is the case of prescribed loading (traction and/or body force) and the second is the case of prescribed displacement.

Prescribed loads
Assume that we have a solid body, acted on by a set of tractions and body forces. Assume that this body contains one or more cracks, and that the loads are held constant even if the cracks grow. The tractions t and the body force [image: image250.png]


could in this case be scaled by a scalar, [image: image252.png]


, such that [image: image254.png]


and [image: image256.png]


. [image: image258.png]


 is known as the generalized load with dimension [image: image260.png]


. If the displacements would change by [image: image262.png]Su



then the work done by the forces on the body would be
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(4.14)

Since the loads remain fixed, the above could be rewritten as

[image: image265.png]



This can be simplified by defining a generalized displacement, [image: image267.png]


, with dimension [image: image269.png][L]




[image: image271.png]q=[, t-udS+[, b-udv








                                  (4.15)

then the work done can be simply written as the product of a force and displacement increment,

[image: image273.png]§U = Péq



.                                              (4.16)

Any loading applied to the body may now be represented by a single generalized force [image: image275.png]


 with corresponding generalized displacement [image: image277.png]


 as sketched in Fig. 4.5.

[image: image278.png]



Fig. 4.5. Using the concept of generalized loads and displacements any loading may be represented as if it consisted of a single load, P with corresponding load point displacement, q

Prescribed displacements

The generalized force and displacement may also be defined for the case of prescribed displacements. Scale the prescribed displacements by [image: image280.png]


, where [image: image282.png]


 is the generalized displacement with dimension [image: image284.png][L]



. Then the work done due to an increment of displacement [image: image286.png]Su = Squ



 is
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Defining the generalized force, [image: image290.png]


 by
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,
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the work increment is once again given by Eq. (3.3), [image: image294.png]§U = Péq



.

4.6. Elastic Strain Energy. Energy Release Rate, G
The elastic strain energy density is given by

[image: image296.png]W = [ a,;dy,




                                             (4.18)

Note that the stress can be found from
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The total strain energy in a body is
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The increment of strain energy density due to a displacement increment [image: image302.png]Su



 producing a strain increment [image: image304.png]


 is
[image: image305.png]SW = 0y;6Y;




and thus the increment in total strain energy is
[image: image307.png]50 = [, sWav



.

From Eqs. (4.14) and (4.16), in the absence of crack growth the work done on a solid due to a displacement increment is

[image: image308.png]EU:PEQ:I t-5ud5+f b- Sudv.
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Using indicial notation and replacing [image: image310.png]


by [image: image312.png]051
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Applying the divergence theorem to the first of the above integrals we have
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Applying the equilibrium equation[image: image317.png]Oijj



 and noting that
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Thus we have shown that in the absence of crack growth, the increment of work done is equal to the increment in strain energy of the body.

For a prescribed displacement problem the total strain energy will be a function of the displacement, q and of the crack configuration, simplified here as beingrepresented by crack area s. Thus we can write [image: image322.png]N = 0(q,s)



. If the crack does not grow, then the change in strain energy for an increment δq of displacement is
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Knowing that (from Eq. (4.22)) [image: image326.png]80 = §U = Pé&q



 we can infer that

[image: image328.png]e
3q








                                                   (4.24) 

i.e. the generalized force is the derivative of the total strain energy with respect to the generalized displacement.

Energy release rate, G

To propagate a crack, energy must be supplied to the crack tip. This energy flows to the crack tip through the elasticity of the body and is dissipated via irreversible deformation, heat, sound and surface energy.

In the following we introduce the idea of energy release rate, G, the energy dissipated by fracture per unit new fracture surface area, ds. We will start with two specific cases, then develop the general definition of energy release rate.
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Lecture 5

Multiple Specimen Method. Compliance Method for Linearly Elastic Materials 

Lecture plan

5.1. Prescribed Displacement. Prescribed Loads. General Loading

5.2. Interpretation of G from Load-Displacement Records. Multiple Specimen Method for Nonlinear Materials

5.3. Compliance Method for Linearly Elastic Materials

5.4. Applications of the Compliance Method. Use of Compliance to Determine Crack Length

5.5. Crack Closure Integral for G
5.1. Prescribed displacement. Prescribed loads. General loading

If displacement is prescribed the strain energy, [image: image330.png]


 can be considered as a function of applied displacement and the crack surface, i.e. [image: image332.png]N = 0(q,s)



. If the crack is allowed to propagate, increasing the fracture surface area by an amount δs, then the change in strain energy is

[image: image334.png]50= 255+ Lsq.
%95+ 5,








                                        (5.1)

As the crack grows, in the case of fixed (during crack growth) displacements [image: image336.png]


, thus

[image: image337.png]



i.e. even though no external work is done on the body during crack growth, the strain energy changes in proportion to the increment of crack area. The energy changeper unit area is called the energy release rate, [image: image339.png]


, with units of energy per area or [image: image341.png][F - L/L?]



, and is defined by


[image: image343.png]



         
(5.2)

with the (·)|q notation to emphasize that the derivative is with respect to a fixed displacement. Written in terms of energy release rate the change in total strain energy for an increment [image: image345.png]8s



 of crack surface area is


[image: image347.png]80 = —G8s.




      


(5.3)

It will be shown that [image: image349.png]


 is always positive and hence that the body loses energy during crack growth. All of the energy dissipated during fracture flows to the crack from strain energy stored in the body prior to fracture.

Prescribed loads

For the case of prescribed loading the increment in displacement, [image: image351.png]


 will not be zero during an increment of crack growth, hence the external loads will do work on the body as the crack grows. The displacement can be considered as a function of the load and fracture surface, i.e. [image: image353.png]q = q(P,s)



 and the hence the strain energy is [image: image355.png]N = 0(q(P,s),s)



.

The increment in strain energy as the crack grows is
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                       (5.4)

Since the force is fixed, [image: image359.png]5P



. Substituting [image: image361.png]on
dq



 and [image: image363.png]o0
o 8s = 8q



, and noting that  [image: image365.png]90|
asly



, the change in strain energy can be written as

[image: image367.png]80 = P&q— G&s,







                                           (5.5)
i.e. the change in stored energy equals the energy input minus the energy dissipated by fracture.The above can be rewritten as

[image: image368.png]) = §(Pq) — 6Pq — Gds.




Noting that [image: image370.png]5P



 in a prescribed loading problem,

[image: image371.png]5(2 — Pq.
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from which it can be inferred that for fixed loads
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                                          (5.6)

General loading

Using the definitions of the generalized force and displacement for the case of prescribed loading, and noting that in this case [image: image375.png]S

S, Eq



. (5.6) is
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,

The quantity in square brackets is the potential energy.

For the case of prescribed displacement, noting in this case that [image: image380.png]


 and [image: image382.png]


 (or [image: image384.png]f;, Qds =0



). Eq. (5.2) can be written as

[image: image386.png]6= —Z-6=—Z[o—{[, t-uds+], b-uav]]



.

Note that the integrals equal zero in the prescribed displacement case.

Denoting the potential energy by [image: image388.png]


,

[image: image390.png]m-0—{f, t-uds+ |, b-uav}



,


                          (5.7)
where the total strain energy, [image: image392.png]


, is defined in Eq. (4.20), the energy release rate can be written in a common form as

[image: image394.png]







                                                    (5.8)
i.e. energy release rate is the change of potential energy per unit crack area. This is taken to be the fundamental definition of [image: image396.png]


. Any other loading, for example loading by a spring or with mixed boundary conditions (load prescribed on part of the boundary and displacement on other parts) will fall in between the two extreme cases of prescribed loading or prescribed displacement. Further interpretation, generalization and application of the energy release rate will be discussed in this and in subsequent chapters. You’ll not escape [image: image398.png]


; energy release rate is a ubiquitous concept in fracture mechanics.
5.2. Interpretation of G from Load-Displacement Records. Multiple Specimen Method for Nonlinear Materials
Suppose that we can perform several experiments on an elastic, cracked body. In the experiment the load, [image: image400.png]


 and the load-point displacement, [image: image402.png]


 are measured and recorded.

Since the material is elastic there is a specific relation between P and q and one can write the strain energy as [image: image404.png]0= 0(P,s)



 for prescribed loads or as [image: image406.png]N= 0(qs



) for prescribed displacements.

In the prescribed displacement case, [image: image408.png]N = 0(q,s)



, and from [image: image410.png]Eqs



. (4.23) and (5.2)
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.

Taking derivatives of [image: image415.png]


 and [image: image417.png]


,

[image: image419.png]


.

The above can be integrated with respect to [image: image421.png]


, holding the crack length fixed

[image: image423.png]— [
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.                                      (5.9)

An alternative integral expression for [image: image425.png]


 may be obtained by considering the prescribed load case in which [image: image427.png]0= 0(P,s)



. However, first an intermediate result is needed. Consider the complementary energy, [image: image429.png]Pq — 0



, shown as the shaded area in Fig. 5.1. 
[image: image430.png]W qdP





Fig. 5.1. Strain energy, Ω and complementary energy (shaded area)

This energy is given by
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,

thus

[image: image433.png]d(Pq — Q) = qdP,




or
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From Eq. (5.6)

[image: image436.png]a
G=—5-(Q—Pq)




Taking derivatives
[image: image437.png]G dq
P  ds




Integrating with respect to P
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(5.11)

Equations (5.9) and (5.11) provide integrals that can be evaluated to determine the energy release rate. The interpretation of these integrals is shown in Fig. 5.2.

[image: image440.png]



Fig. 5.2. Interpretation of Eqs. (3.20) and (3.22)

To understand Eq. (5.9) consider loading a body with crack area [image: image442.png]


 up to a displacement of q∗as shown. At this displacement, allow the crack to grow a small amount, [image: image444.png]


 while holding the displacement fixed. Due to crack growth the body will be more compliant (or less stiff) and hence the load will drop. Now unload the body and the displacement will return to zero since the body is assumed to be elastic. At every value of q the difference in P between the loading curve for crack area [image: image446.png]


 and unloading curve for crack area [image: image448.png]s + ds



 is approximately [image: image450.png]


. Hence the area between the curves is approximately

[image: image452.png]Gds = —ds [} = dq — area



 between curves.
To understand Eq. (5.11) consider loading a body with crack area [image: image454.png]


 up to a load [image: image456.png]


 shown in Fig. 5.2. Holding the load fixed, allow the crack to grow. Since the body is now more compliant the displacement will increase. Now unload to zero load. The displacement difference between the two curves is approximately [image: image458.png]


. Thus the area between the two curves is

[image: image460.png]


area between curves.
Both of these results have the very simple interpretation that the difference between the work done on the sample and the energy that can be recovered upon unloading is equal to the energy release rate, G multiplied by the increment in crack area, ds. 

In principle, one could construct G = G(P,s), or G = G(q,s) by performing a series of experiments on a set of samples identical except for different crack lengths. The derivatives 
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P

¶

¶

 or 
[image: image462.wmf]s

q

¶

¶

 could be determined by differentiating the P vs. q data with respect to crack length. This so-called multiple specimen technique for determination of G has been used, but has largely been superseded by other techniques and by computational methods.

5.3. Compliance Method for Linearly Elastic Materials
When the material is linearly elastic the P vs. q curve is linear and the analysis of G can be greatly simplified. The displacement per unit force applied is called the compliance, C with units of [L/F]. It is the inverse of the slope of the P vs. q curve, 
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The strain energy is given by 
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Recall from Eq. (5.2) that for fixed displacement 
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Recall from Eq. (5.6) that for fixed load 
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Thus the equation for G does not depend on whether loads or displacements are fixed. However, for fixed displacement G is a decreasing function of crack length, while for fixed load G increases with crack length. 

If the crack grows under fixed displacement then as discussed above all of the energy required for fracture comes from strain energy in the body, i.e. 
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In the case of fixed force, the applied loads do work on the body during crack growth. In this case, from Eq. (5.6), the energy balance is 
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Thus it is seen that if the crack grows under fixed load conditions 2G ds units of work are done on the body. This work is split evenly between increasing the strain energy and energy loss due to crack extension. 

5.4. Applications of the Compliance Method. Use of Compliance to Determine Crack Length
In many test specimens and applications one can perform a stress analysis to determine the load-point displacement as a function of crack area. This analysis could be analytical or computational. Consider, for example the test specimen shown in Fig. 5.3. 
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Fig. 5.3. DCB geometry, thickness B, load-point displacement q
This geometry is particularly useful for the study of delamination in composite materials.
This geometry is known as the double cantilever beam, or DCB. If [image: image476.png]a<h



 then the part of the sample to the left of the crack tip can be considered to consist of two cantilevered beams. The portion of the sample to the right of the crack tip is approximated as stress free and hence as having no displacement. (This is reasonable except just at the base of the “beams” where there is some compliance.) The displacement of a single beam is 
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Note that the change fracture surface area 
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The derivative is 
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Hence using the above and Eq. (5.14) we can write an expression for 
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As a function of the applied displacement, q,
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Thus G is an increasing function of a for a fixed load, but a decreasing function of a for a fixed displacement. 

Use of compliance to determine crack length 
Under cyclic loading a crack will generally grow a small amount per cycle of loading. If by experimental, analytical or computational analysis one can pre-determine C(s) for a particular test specimen, then if during the experiment the compliance is measured then the crack length can be determined from the inverse of C(s). Compliance is determined experimentally by measuring the load and load-point displacement simultaneously. Load point displacement can be measured using an LVDT or clip gauge, see the experimental section for further details.

5.5. Crack Closure Integral for G
Recall that the energy release rate is defined as 
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. By considering the energy differences between a body before and after crack growth it will be shown that G can be written in terms of the stresses and displacements at the crack tip, and hence that for elastic materials, G and 
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Equations (4.21) and (4.22) can be combined to state the “principle of virtual work,” 
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Following the derivation given by Rice consider a body containing a cavity as shown in Fig. 5.4. 
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Fig. 5.4. Body V and surface J. J includes surface of cavity 
After the cavity grows, body is 
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. The solution to the associated boundary value problem of linear elasticity is 
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 . Keeping the same boundary conditions, allow the cavity to grow so that now the volume is 
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 is the new, traction free surface created by allowing the cavity to grow. The solution to the new problem is 
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Writing the strain energy density W as a function of the strain, γ , the difference between the potential energy before and after growth of the cavity is 
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Noting that 
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and applying the principle of virtual work 
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Substituting Eq. (5.20) into Eq. (5.18), simplifying and re-arranging 
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To further simplify Eq. (5.21) two side calculations are needed. 

Side calculation 1: From the definition of W recalling as well 
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Applying the divergence theorem
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Side calculation 2:
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Substituting Eqs. (5.22) and (5.23) into Eq. (5.21),
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Noting that 
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Similarly, 
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Equation (5.25) has the interpretation that change in potential energy = work done in releasing tractions on 
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 + strain energy of removed material, δV . 

If instead of a cavity we have a crack and we allow that crack to grow, creating new surface 
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 then the volume removed will be zero and the change in potential energy will be 
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Some explanation of the above is in order. The traction will depend on the stress, which in turn depends on the strain, and hence on the gradient of the displacement field. Thus 
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In a linearly elastic material, as sketched in Fig. 5,5, 
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46 3 Energy Flows in Elastic Fracture

Fig. 3.6 Schematic of u .
traction and displacement u u’ +Au,
ahead of crack, before

(@Y, 1°) and after crack
growth (u + Au;,0) ina
linearly elastic material

energy will be

ud+Au;
—am= -/ f tidu; dS.
A7 Ju)

Some explanation of the above is in order. The traction will depend on the'stress,
which in turn depends on the strain, and hence on the gradient of the displacement
field. Thus #; = ; (Vu). Ahead of the new crack surface, u; = u{ and f; =1?. When

the crack grows, the displacement is u{ + Au; and the traction drops to zero.
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Fig. 5.5. Schematic of traction and displacement ahead of crack, before 
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 and after crack growth 
[image: image542.wmf])

0

,

(

0

i

i

u

u

D

+
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The total new surface area created in growing the void (Fig. 5.4) is 
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. Taking the void to be a crack, the new fracture surface area, 
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 By the definition of energy release rate (Eq. (5.8)) 
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Noting that the tractions, 
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where 
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. This result is valid for any elastic material and for any direction of crack growth. The above is known as the crack closure integral and was first given by Irwin. Note that 
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 is the crack opening (or sliding for Mode-II and Mode-III) displacement. 

What is the sign of G? Considering the case of a tensile crack, the traction on 
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 would be downwards (negative), while the crack opening 
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 would be positive, thus G would be positive.
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Lecture 6

General Loading (2D Crack). J-Integral. Two-Dimensional Problems. Three-Dimensional problems

Lecture plan

6.1. G in Terms of KI, KII, KIII for 2D Cracks That Grow Straight Ahead. Mode I (II, III) Loading. General Loading (2D Crack)

6.2. Contour Integral for G (J-Integral). Two-Dimensional Problems

6.3. Three-Dimensional problems. Example Application of J-Integral

6.4. Exercises

6.5. Criteria for Elastic Fracture. Introduction

6.1. G in Terms of KI, KII, KIII for 2D Cracks That Grow Straight Ahead. Mode I (II, III) Loading. General Loading (2D Crack)
Although Eq. (5.26) applies for any direction or pattern of crack growth, calculating the actual value of G is difficult except for the case in which a crack grows straight ahead in a 2D body, for example, the crack in Fig. 5.3 with length a grows to a new length 
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 along the line 
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. In this case the tractions and displacements ahead of the crack can both be found from Eqs. (2.23), (3.7), and (3.16). 

With respect to the coordinate system of Fig. 2.2, and for a crack increment of 
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For a crack that grows straight ahead 
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 is the crack tip displacement field (subtracted from any displacement existing along the crack line prior to crack growth) in polar coordinates. Along 
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 is the crack tip stress field in polar coordinates. The crack closure integral, Eq. (5.26), may now be written as 
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(6.1)

Mode-III loading 

In a Mode-III crack, since 
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 the only non-zero term in Eq. (6.1) is for i = 3. The displacement is 
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Noting that 
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(6.2)

Thus G and [image: image587.png]


 are in this case equivalent. A check will confirm that the units of G are [image: image589.png][F/L1=[F-L/L?]



, or energy per area. 

Note that although Eq. (6.2) is valid only if the crack grows straight ahead, it could be used to calculate [image: image591.png]


 no matter where the crack grows. How is this so? Suppose the crack configuration and loading are given and suppose further that you have a way to calculate G for straight ahead crack growth. Equation (6.2) could then be applied to determine [image: image593.png]


. Were the crack to propagate, it might grow in some other direction, in which case the actual energy release rate will not be given by Eq. (6.2). This, however, does not invalidate the use of Eq. (6.2) for calculating [image: image595.png]
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Mode I loading 

For a crack under tensile, or Mode-I loading, ahead of the crack 
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 thus only the i = 2 term in Eq. (6.1) is non-zero. The stress ahead of the crack is from Eq. (3.7) 
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Substituting into Eq. (6.1), evaluating the integral and simplifying 
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Recall that 
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Mode II loading 

Similarly, for Mode II loading, 
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General loading (2D crack) 

For a 2D crack under general loading the stress and displacement fields are a superposition of the Mode-I, II, III fields and the energy release is 
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6.2. Contour Integral for G (J-Integral). Two-Dimensional Problems
An alternative to the crack closure integral is to take an integral on a contour that surrounds the crack tip. This integral will represent the energy that flows to the crack tip and will be shown to be equivalent to the crack closure integral. The original derivation is given by Rice. 
Begin by specializing Eq. (5.21) to 2D cracks that grow straight ahead, i.e. in the x1 direction. In this case 
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The region A is the entire body. However since the integrand is second order in 
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 it is sufficient to consider A as any finite region in which the crack is embedded. 

This region will have a boundary 
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, where Γ is a contour that starts and stops on the crack line, and 
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 lie along the top and bottom crack faces, as shown in Fig. 6.1.
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3.7 Contour Integral for G (J-Integral)

Fig. 3.7 To calculate the
energy release rate in terms of
the J integral take < to be
any fixed region surrounding
the crack tip

3.7 Contour Integral for G (J-Integral)

3.7.1 Two Dimensional Problems

An alternative to the crack closure integral is to take an integral on a contour that
surrounds the crack tip. This integral will represent the energy that flows ta the erack
tip and will be shown to be equivalent to the crack closure integral. The original
derivation is given by Rice [3]. Generalizations and further discussion are given
in [4-6].

Begin by specializing Eq. (3.32) to 2D cracks that grow straight ahead, i.e. in the
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Fig. 6.1. To calculate the energy release rate in terms of the J integral take A to be any fixed region surrounding the crack tip
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Consider a fixed coordinate system, 
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[image: image625.wmf]a

f

x

f

a

f

a

x

x

f

Da

Df

¶

¶

+

¶

¶

-

=

¶

¶

+

¶

¢

¶

¢

¶

¶

=

1

1

1

 .

Thus Eq. (6.7) can be written as 
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The integrand of the second term is of order 
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(6.8)
To simplify the second term of Eq. (6.6) note that
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Differentiating as described above, 


[image: image631.wmf]d

Г

Wn

a

u

t

dA

x

W

a

u

dA

x

W

a

W

dA

x

W

a

W

dA

Da

DW

i

i

Г

Г

Г

j

i

ij

A

ij

ij

A

R

A

÷

ø

ö

ç

è

æ

-

¶

¶

=

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

-

¶

¶

=

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

-

¶

¶

¶

¶

=

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

-

¶

¶

=

ò

ò

ò

ò

ò

-

+

+

+

1

1

,

1

1

)

(

)

(

s

g

g


using the divergence theorem in the last line. Note that on 
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Inserting Eqs. (6.7), (6.8) and (6.9) into Eq. (6.6) in the limit as 
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(6.10)
The importance of the J -integral in fracture mechanics cannot be overstated. It is used in many contexts to compute energy flow to the crack tip, to estimate crack opening and is used as part of failure criteria for ductile materials. Much more of J will be seen in later chapters. 

J has the following important properties: It is path independent, that is any path Γ that starts and ends on the crack faces will give the same value of J, see the exercises. The value of J does not depend on the direction of subsequent crack growth, however, J = G only for straight ahead, (x1 direction) crack growth in elastic materials. (The energy release rate, Eq. (6.6) is given only for straight ahead crack growth.) Thus J has the same relation to the stress intensity factors as does G for straight ahead crack growth, namely for general loading,
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6.3. Three-Dimensional problems. Example Application of J-Integral
The J integral can be extended to three dimensions. For example, consider a crack in a plate of thickness B as shown in Fig. 6.2.
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3.7 Contour Integral for G (J-Integral)

Fig. 38 Surface for
computing J in 3D. ) and
S, are on the free surfaces of
aplate of thickness, b

growth, however, J = G only for straight ahead, (x; direction) crack growth in
elastic materials. (The energy release rate, Eq. (3.43) is given only for straight ahead
crack growth.) Thus J has the same relation to the stress intensity factors as does G
for straight ahead crack growth, namely for general loading,
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Fig. 6.2. Surface for computing J in 3D. S1 and S2 are on the free surfaces of a plate of thickness, b

Surround the crack line with a surface 
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Note that in computational methods a local value of 
[image: image646.wmf])
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 can be defined by taking the 2D J for slices (for example shaded slice in the figure) along the crack line. The sum of these slices can be interpreted as the surface integral above. 

Example application of J-integral 
An experimental setup to study the fracture of elastomers consists of a long strip loaded in tension. To analyze this configuration let us approximate it as a thin, infinite strip of height h and thickness B containing a semi-infinite crack, as shown in Fig. 6.3. 
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52 3 Energy Flows in Elastic Fracture

Fig. 3.9 Infinite strip with
semi infinite crack

and u(x;, £4) = £4%. Assuming B < / plane-stress can be assumed to hold
away from the edges and away from the crack tip.

Choose I' = I't + Iy + I's + I'y + I's to be along the path shown, i.e. with ver-
tical sections far to the left and right of the crack and with horizontal sections just
inside of the boundaries. On I'} and I's there is no contribution to J since behind
the crack the material is completely unloaded and hence W =0 and 7; = 0 here.
Along I; and I there is also no contribution to J since n; = 0 and ;,; = 0 since
uy and uy are constants along the boundaries. Only I3 contributes to J. Along
I3, np =1 and tijuj,; = oy1u1,1 +021u2,1. Far to the right of the crack o1 =0
and u; =0, thus [, fiu;,1 " = 0. This leaves only J = [, WdI". Away from
the crack the material is in uniform, biaxial tension and hence W = constant and
J =hW. Assuming plane stress with y5; = 4% and yy; =0, the strain energy den-

sity is W = 3(4%)2 £ and hence

2
J= ’% (AT”) £ (3.50)
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Fig. 6.3. Infinite strip with semi infinite crack

Assume that the boundary conditions are 
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 plane-stress can be assumed to hold away from the edges and away from the crack tip. 
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 to be along the path shown, i.e. with vertical sections far to the left and right of the crack and with horizontal sections just inside of the boundaries. On 
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6.4. Exercises 

1. Prove that 
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2. Derive Eq. (5.16). 

3. A semi-circular sample of thickness B = 20.7 mm, radius W = 50 mm and elastic modulus, [image: image673.png]E=
=10°.
N/mm?



 was analyzed using the finite element method. The geometry and mesh for the analysis are shown in Fig. 6.4. 
[image: image674.png]



Fig. 6.4. FEM mesh for semi-circular test specimen. Outline of sample is shown in dashed lines. Deformed shape and mesh shown in solid lines. Displacement is magnified greatly

Applying a load of P = 100 N, the analysis was repeated for a number of crack lengths. The load-point displacement q vs. the crack length is tabulated in Table 6.1.
Table 6.1. Computed load point displacement vs. crack length for test sample shown in Fig. 6.4 with load P = 100 N
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3.8 Exercises

Table 3.1 Computed load
point displacement vs. crack ¢, mm

length for test sample shown

in Fig. 3.10 with load 6.640 x 107

P=100N 8.787 x 107
12.12x 107
1737 x 107
29.75 x 107
4385x 107
8249 x 107

Fig. 3.10 FEM mesh for
semi-circular test specimen.
Outline of sample is shown in
dashed lines. Deformed shape
and mesh shown in solid
lines. Displacement is
magnified greatly

VN

Fig. 3.1 To prove that J is /\
path independent let r
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Define a non-dimensional energy release rate by 
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. Using the compliance method and taking numerical derivatives of the data in the table, tabulate and plot the non-dimensional energy release rate, 
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, vs. the non-dimensional crack length, a/W. 

4. Prove that J is path independent. To do this, first show that the integral 
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for any closed curve Γ that surrounds a simply connected region (i.e. no holes inside of Γ). Then, specialize the above to i = 1 and consider the Г shown in Fig. 6.5, breaking up Γ into the four sectors suggested by the figure.

[image: image679.png]



Fig. 6.5. To prove that J is path independent let [image: image681.png][=T,—T,+I'* +10




5. Directly calculate the relation between the J -integral and [image: image683.png]


 for anti-plane shear. You can, for example, choose a circular path around the crack tip and then simply substitute the asymptotic anti-plane shear fields into J. Extension: Instead of using the asymptotic fields, use the general expression (either the series expansion, Eq. (2.23) or the full-field solution, Eq. (2.33)) and show that the addition of the higher order terms does not change the value of J. 
6. Calculate the J integral for the double cantilever beam specimen shown in Fig. 5.3.

7. Consider a single, elastic fiber of diameter d, embedded in a rigid half-space. Suppose that the fiber is debonded from the substrate to a depth of a, as shown in Fig. 6.6. 
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54 3 Energy Flows in Elastic Fracture

Fig. 3.12 Pull out of elastic
fiber from rigid half-space

7. Consider a single, elastic fiber of diameter d, embedded in a rigid half-space.
Suppose that the fiber is debonded from the substrate to a depth of @\ as shown
in Fig. 3.12. If a tensile force of P is applied to the fiber, calculate the energy
release rate for growth of the debond.

. Calculate J for an anti-plane shear crack with finite opening angle 8- Wihia'does
this result tell you?
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Fig. 6.6. Pull out of elastic fiber from rigid half-space

If a tensile force of P is applied to the fiber, calculate the energy release rate for growth of the debond. 

8. Calculate J for an anti-plane shear crack with finite opening angle β. What does this result tell you? 

6.5. Criteria for Elastic Fracture. Introduction
Criteria for the growth of a pre-existing crack as generally based on reaching critical values of the stress intensity factors or energy release rate. Starting with the simplest case, that of tensile fracture in an elastic material, criteria for fracture under a range of conditions are explored. These include the initiation and evolution of cracks under mixed-mode loading, considerations of the stability of fracture, effects of temperature, fatigue crack growth and stress corrosion cracking.
Introduction

Elastic fracture should in the very narrowest sense mean that the only change to a material during fracture is atomic separation along the fracture surface. Everywhere else the material is unchanged, i.e. there is no re-arrangement of the structure of the material. Such cases are very rare, or perhaps even non-existent. A pragmatic definition of elastic fracture would be that the size of the “process zone”, or region around the crack tip in which inelastic deformation takes place, be it plastic flow, micro-fracture etc., is very small compared to the dimensions of the test specimen of component being considered. In such cases the load-deflection relation of the component in the absence of crack growth is linear and linear elastic stress analysis is sufficiently accurate to describe the stress, strain and displacement fields. The discussion begins with consideration of Mode-I loading, followed by Mode-II and -III and mixed mode loadings.
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Lecture 7

Crack Growth Stability and Resistance Curve. Mixed-Mode Fracture Initiation and Growth

Lecture plan

7.1. Initiation Under Mode-I Loading

7.2. Crack Growth Stability and Resistance Curve

7.3. Loading by Compliant System

7.4. Resistance Curve

7.5. Mixed-Mode Fracture Initiation and Growth

7.1. Initiation Under Mode-I Loading
We assume from the start that we have a body with a sharp crack subjected to tensile loads. In the last chapter we showed that when a crack grows, energy is “released” from the body to the crack tip at a rate of [image: image686.png]G [J/m?]



. If we assume that a given amount of energy per unit area is required to grow a crack, then the resulting fracture criterion is that a crack will grow when the available energy release rate G is greater than or equal to the required energy, 
[image: image687.wmf]c

G

, or 
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 .                                                   (7.1)

Note that G = GС (P, a, geometry), i.e. the available energy release rate depends on the applied load, on the crack length (or area) and on the geometry of the body. The required energy, 
[image: image690.wmf]c

G

 is considered to be a material property and is called the “fracture energy” or “fracture toughness.” Physically this energy combines the energy of the newly created surfaces with the energy dissipated in the process zone through plastic deformation, micro-cracking, friction, craze formation, void growth and so on. In anisotropic materials 
[image: image691.wmf]c

G

 may depend on the direction of crack growth. Consider fracture in wood for example, where cracks will prefer to grow along the grain rather than across it, demonstrating that the toughness along the grain is much less than across the grain. The above can be considered as a generalization of Griffith’s fracture criterion in which 
[image: image692.wmf]c

G

 is equal to the energy of the newly created fracture surfaces. 

The canonical problem of the Griffith theory is the through crack in a plate under tension, as shown in Fig. 7.1. 
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56 4 Criteria for Elastic Fracture
Fig. 4.1 Through crack of
length 2a in a plate under

tension. A uniform stress field

G112 0o s assumed toexist L S T B

away from the crack

Note that G = G(P, a, geometry), i.e. the available energy release rate depends on
the applied load, on the crack length (or area) and on the geometry of the body. The
required energy, G, is considered to be a material property and is called the “fracture
energy” or “fracture toughness.” Physically this energy combines the energy of the
newly created surfaces with the energy dissipated in the process zone through plastic
deformation, micro-cracking, friction, craze formation, void growth and so on. In
anisotropic materials G, may depend on the direction of crack growth. Consider
fracture in wood for example, where cracks will prefer to grow along the grain
rather than across it, demonstrating that the toughness along the grain is much less
than across the grain. The above can be considered as a generalization of Griffith’s
fracture criterion in which G, is equal to the energy of the newly created fracture
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Fig. 7.1. Through crack of length 2a in a plate under tension. A uniform stress field 
[image: image694.wmf]¥

=

s

s

22

 is assumed to exist away from the crack

Assuming plane stress, G for this problem is 
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(7.2) 

where 
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 is the tensile stress, E is the Young’s modulus and a is the half crack length. Setting 
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 and solving, the predicted stress at the onset of fracture is 
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To test the theory, Griffith had glass taken from test tubes blown into thin-walled spheres and cylinders. A glass cutter was used to introduce through cracks in the test samples, which were then annealed to eliminate any residual stresses due to cutting. The samples were then pressurized and the pressure at the point of unstable fracture recorded. The stress σf at fracture was then calculated for each test. The results, shown in Fig. 7.2, demonstrate that the failure stress is linear with 
[image: image699.wmf]a
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 as predicted by the theory. 
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4.2 Initiation Under Mode-I Loading

6FT

failure stress, 6, MPa

15
1a, m™

n
Fig. 4.2 Fracture stress vs. 1/y/a from Griffith’s experiments on cracked glass tubes and
spheres [1]. a is the half crack length, and o is the measured failure stress. Data are shown as
points. The line is a linear fit to the data. Note that the fracture strength will not increase indef-
initely as a gets smaller. The strength of a “perfect” structure is limited by the intrinsic bond
strength of the material. In the case of glass the theoretical maximum strength is on the order of
1 GPa, thus Griffith’s measured fracture strengths are about an order of 100 lower than the theo-
retical strength. The sensitivity of glass and other brittle materials to small flaws is what ultimately
limits their practical strengths. Thin fibers, which due to their very small dimensions cannot contain
large cracks, will generally exhibit improved tensile strengths relative to bulk glass

Table 4.1 Selected B B
toughness values for Material Kjc.MPaym G, Jim?
nominally brittle materials
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Fig. 7.2. Fracture stress vs. 
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 from Griffith’s experiments on cracked glass tubes and spheres [1]. a is the half crack length, and 
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 is the measured failure stress.

The data in Fig. 7.2 are best fit with
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,
corresponding to a critical stress intensity factor of 
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Data are shown as points. The line is a linear fit to the data. Note that the fracture strength will not increase indefinitely as a gets smaller. The strength of a “perfect” structure is limited by the intrinsic bond strength of the material. In the case of glass the theoretical maximum strength is on the order of 1 GPa, thus Griffith’s measured fracture strengths are about an order of 100× lower than the theoretical strength. The sensitivity of glass and other brittle materials to small flaws is what ultimately limits their practical strengths. Thin fibers, which due to their very small dimensions cannot contain large cracks, will generally exhibit improved tensile strengths relative to bulk glass

For now only materials with isotropic fracture and elastic properties will be considered. Such materials have no preferred direction of crack growth. As will be shown later, when subjected to a tensile load a crack (at least in 2D) will grow straight ahead and hence we can make the connection between [image: image707.png]


 and G, Eq. (6.3). Since in this case [image: image709.png]


 and G are equivalent the fracture criterion can also be presented as 

[image: image711.png]
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where the “fracture toughness”, [image: image713.png]


. A selection of typical fracture toughness values (for nominally brittle materials) is given in Table 7.1.

Table 7.1. Selected toughness values for nominally brittle materials
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1a, m™

Fig. 4.2 Fracture stress vs. 1/y/a from Griffith’s experiments on cracked glass tubes and
spheres [1]. a is the half crack length, and o is the measured failure stress. Data are shown as
points. The line is a linear fit to the data. Note that the fracture strength will not increase indef-
initely as a gets smaller. The strength of a “perfect” structure is limited by the intrinsic bond
strength of the material. In the case of glass the theoretical maximum strength is on the order of
1 GPa, thus Griffith’s measured fracture strengths are about an order of 100 lower than the theo-
retical strength. The sensitivity of glass and other brittle materials to small flaws is what ultimately
limits their practical strengths. Thin fibers, which due to their very small dimensions cannot contain
large cracks, will generally exhibit improved tensile strengths relative to bulk glass

Tabled.1 Selected
toughness values for

Material Kjc.MPaym G, J/m?
nominally brittle materials < T

Borosilicate glass 08 9.
Alumina 9% polycrystalline 40 39
Zirconia-toughened alumina 6. 9.
Yttria partially stabilized zirconia 13 730
Aluminum 7075-T6 25

AISIC metal matrix composite 10. 400.
Epoxy 04

For now only materials with isotropic fracture and elastic properties will be con-
sidered. Such materials have no preferred direction of crack growth. As will be
shown later, when subjected to a tensile load a crack (at least in 2D) will grow
straight ahead and hence we can make the connection between K; and G, Eq. (3.40).
Since in this case K; and G are equivalent the fracture criterion can also be pre-
sented as
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Environmental conditions play an important role in fracture and most other aspects of material behavior. For example the fracture toughness of metals and polymers is generally reduced as the temperature is reduced. In some cases this effect can be drastic. For example, in Fig. 7.3 the toughness of a high strength steel alloy is plotted vs. temperature. 

Above 0°C the material is ductile and has a high fracturetoughness of over 120 MPa [image: image716.png]


. However, as the temperature drops below 40°C the fracture becomes more brittle and toughness drops to less than 40 MPa m. Since energy is the square of KI this implies that the energy needed for fracture drops by almost a factor of 10 at low temperatures. Avoiding brittle fracture at low temperatures is of key importance in modern structural design, be it for railcars traversing North Dakota in winter or ships crossing the North Atlantic.
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Fig. 7.3. Fracture toughness vs. temperature for high strength steel with yield strength 1175 MPa. 0.35% C, 0.65% Mn, 0.35% Si, 0.80% Cr, 0.30% Mo, 0.10% V, 1.26% Ni, bal. Fe. 
Note that the toughness drops off dramatically below approximately −40°C. 
Ductile and brittle fractures are characterized not only by low and high toughness values, but also by the physical mechanisms of fracture. Ductile fracture in metals generally occurs through a process of void formation, void growth under tensile stress followed by coalescence of the voids leading to macroscopic fracture. A typical fracture surface, see Fig. 7.4 exhibits a dimpled appearance. 
[image: image718.png]



Fig. 7.4. Ductile fracture surface, aluminum 6061

The dimpled surface is a characteristic of ductile fracture in which failure proceeds through a process of void formation, void growth under tensile stresses followed by coalescence of voids leading to fracture. 
Brittle fracture in metals can be transgranular, i.e. cutting across grains or intergranular, where the crack grows around the grains, or a mix of both. In either case the fracture surface is generally smoother. An example of intergranular growth is shown in Fig. 7.5.

The simple fracture criteria above will let you determine if a crack will grow or not, but it does not tell us anything about how fast, how far, or in what direction the crack will grow. These topics are addressed in subsequent chapters and sections.

[image: image719.png]



Fig. 7.5. HY100 forging steel, notched impact specimen, failed through brittle intergranular fractur
7.2. Crack Growth Stability and Resistance Curve
If, as a crack extends from a pre-existing flaw, the available G falls below the toughness, GC, then the crack will stop growing (arrest) and will continue to grow only if the loading or other conditions change. If as the crack grows, G increases and becomes ever higher than GC the crack will become unstable, rapidly growing until the body is completely fractured. The prediction, or better yet, prevention of unstable crack growth (except when it is desirable as in some manufacturing operations) is of primary concern in mechanical and structural design and hence warrants careful attention.

The stability of crack growth depends on both the characteristics of the material and on the geometry and nature of the loading. For example, from the analysis ofthe DCB specimen it is easily shown that if the applied load is fixed then G grows as a2, Eq. (5.15), whereas if the displacement is fixed [image: image721.png]


 decreases as [image: image723.png]1/a*



, Eq. (5.16).

Thus it is far more likely for fracture to be stable under conditions of fixed displacement loading than under conditions of fixed force.

7.3. Loading by Compliant System
In most applications the component is not under fixed force or fixed displacement loadings, but rather under an intermediate state in which as the crack propagates and the component becomes more compliant, load is transferred to other parts of a system. In terms of generalized forces and displacements such a general loading can be represented as a body loaded by a spring with compliance CM, to which a fixed displacement, [image: image725.png]dr



 , is applied, as sketched in Fig. 7.6. 
The displacement of the body is q and the load is

[image: image727.png]ar
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,

where [image: image729.png]


 is the compliance of the body. Loading of the body by fixed displacement is equivalent to [image: image731.png]


 while loading by fixed force is equivalent to [image: image733.png]
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Fig. 7.6. General loading by a compliant system
The energy release rate is unchanged from the previous results, Eq. (5.14) i.e.
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However, the rate of change of [image: image738.png]


 is affected. Substituting [image: image740.png]ar
 crau



into Eq. (5.14) and differentiating
.
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                               (7.5)

Since the first term in Eq. (7.5) is [image: image744.png]always < 0,0G/ds



 is always smaller for the case of finite [image: image746.png]


 than for dead weight loading [image: image748.png]


. As the “machine” becomes stiffer ([image: image750.png]


 decreases) the first term becomes larger and eventually, [image: image752.png]aG/ds < 0



, stabilizing crack growth.

7.4. Resistance Curve
In some cases crack growth can be stable even when [image: image754.png]aG/ds > 0



. How so? In some cases, a material’s resistance to fracture increases with crack extension. In 2D, let [image: image756.png]Gz (Aa)



 be the energy release rate required to propagate a crack. This function, called the “resistance curve” is sketched in Fig. 7.7. 
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Fig. 7.7. Schematic of resistance curve (R-curve), [image: image759.png]Gr(A )




Fig. 7.7. Generally [image: image761.png]


 increases with crack extension. It may or may not reach a steady state. For elastic-plastic materials, [image: image763.png]


 increases much more for plane stress than for plane strain problems, due to the decreased constraint and hence greater ease of plastic flow in plane stress. Note that in [image: image765.png]2D



, [image: image767.png]


, where B is the thickness of the plate.
The physical sources of an increasing [image: image769.png]


 curve are numerous; two examples are given here: 
(1) For elasticplastic materials, the level of crack tip strain for the same applied stress intensity factor, is less for propagating cracks that for stationary cracks. If a specific strain ahead of the crack is needed to grow the crack, this implies that the applied stress intensity must be increased for the growing crack. 
(2) For fiber or particulate reinforced composites, as the crack grows there may be fibers in the wake of the crack tip that bridge across the crack tip, applying a closing force near the crack tip. To overcome these closing forces the externally applied stress intensity factor must be increased.

For perfectly brittle materials, [image: image771.png]


 is a constant. For other materials, [image: image773.png]


 may rise and then reach a steady state value or it may continue to increase. In ductile metals it is generally found that the resistance curve increases at a faster rate for tests done on thin sheets than for tests done on thick sections. In small scale yielding, [image: image775.png]


 and [image: image777.png]


 are related by Eq. (6.3) and thus the resistance curve could also be presented in terms of [image: image779.png]Kg(As)



.

Regardless of the source of the resistance curve, a criterion for crack stability can be stated. In 2D, for the crack to continue to advance,


[image: image781.png]G(s) = GR(s — s0),





                                            (7.6)

where [image: image783.png]So = B - ay,a



 is the initial crack length, [image: image785.png]


, and a is the current crack length. The condition for stability of crack growth is
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                                                       (7.7)

Unstable crack growth may occur when
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                                                       (7.8)

Consider the two extreme cases of fixed load and fixed displacement loading. In the case of fixed load, [image: image791.png]


 is an increasing function of a, e.g. Eq. (5.15) for the DCB sample. For fixed displacement [image: image793.png]


 decreases with a, e.g. Eq. (5.16) for the DCB sample. In all cases [image: image795.png]


 increases as [image: image797.png]p?



 or [image: image799.png]


. The available energy release rates [image: image801.png]G(P,a)



 for the fixed load case and [image: image803.png]G(q,a)



 for the fixed displacement case are superimposed with the GR resistance curves in Figs. 7.8 (a, b).

Loading with fixed force will be unstable after a small amount of crack growth even for a material with a rising R-curve. Crack growth is always stable under fixed displacement loading. Most applications would involve loading through a compliant system, thus the stability will be between the two extremes above.
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Fig. 7.8. Available energy release rate for (a) fixed force loading and [image: image806.png](b)



 fixed displacement loading superimposed with crack growth resistance, [image: image808.png]



In the case of fixed displacement loading, the crack growth is always stable, i.e. the crack will begin to grow when the applied displacement is large enough that [image: image810.png]G(q,ap) = Gg(0) = G,



. To continue to grow the crack the applied displacement must be increased to satisfy Eq. (4.6).

In the case of fixed force loading, crack growth will be unstable for brittle materials, since once the load has increased to a value such that [image: image812.png]G(P,a) = G



, any increment in crack growth will increase [image: image814.png]


 to a value above [image: image816.png]


. However, if the material has a rising resistance curve, then it may be possible for the crack to initiate at [image: image818.png]


 and then grow stably for a small distance before the [image: image820.png]


 curve is tangent to the [image: image822.png]


 curve. Note that once the fracture becomes unstable, the crack can grow very fast; at speeds that approach the sound speed of the material.

In many real applications the loading is somewhere between fixed load and fixed displacement, thus G may increase or decrease with respect to a and the stability will depend on the relative stiffness of the loading and on the slope of the [image: image824.png]


 curve. Thus, although for a brittle material stable crack growth will only be possible under fixed displacement loading where [image: image826.png]<o



, for a material with rising [image: image828.png]


-curve, stable crack growth is possible if
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.
7.5. Mixed-Mode Fracture Initiation and Growth
Cracks in components whose directions of principal stress vary spatially or in components made of a material with an anisotropic fracture toughness (toughness depends on direction of fracture plane) will generally propagate along a curving surface as the crack seeks out its path. The prediction not only of when and how far a crack will grow, but of its path is important in the analysis of potential failures. For example, if a gear tooth was cracked would the crack propagate across the tooth, just breaking it off? Or would the crack propagate into the hub of the gear, causing the entire gear to fly apart? Would a crack in the skin of a pressurized aircraft fuselage grow straight and unzip the entire fuselage or would it curve and be contained with one bay (a section of the fuselage bounded by the circumferential frames and the longitudinal stringers)?

Such problems involve complex, 3D geometries. The cracks in such cases generally have a mix of Mode-I,-II,-III loadings that varies along the crack front and that may vary as well during a cycle of loading. As a start to understanding such problems we will start with 2D mixed-mode loadings.

If as sketched in Fig. 7.9, a crack is subjected to a combination of Mode-I and Mode-II loadings (mixed-mode loading) the crack will generally not propagate straight ahead. 
[image: image831.png]



Fig. 7.9. 2D crack under mixed-mode loading. KI = σa√πa sin2 β, 
KII = σa√πa sinβ cosβ. Direction of next step of crack growth is shown as dashed line on right with direction θ ∗ from the crack line

The exception would be if the line along [image: image833.png]


 is a very weak plane of the material, for example wood grain, or a weak bond line.

Far away from the crack the stress is 
[image: image834.png]0y, =0,sin? B, 0y, =0,sinfcosP, g,,=0,cos?p.




The resulting stress intensity factors are
[image: image835.png]\/ma sin B cos B




At what stress level, [image: image837.png]


 will the crack begin to grow and in what direction?

Theories for mixed-mode fracture include: 
(1) maximum circumferential stress, 
(2) minimum strain energy density, 
(3) maximum energy release rate and local symmetry. 
Only the theory of maximum circumferential stress and of maximum energy release rate will be discussed here.
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Lecture 8

Second Order Theory for Crack Kinking and Turning. Crack Growth Under Fatigue Loading 

Lecture plan

8.1. Maximum Hoop Stress Theory. Maximum Energy Release Rate Criterion

8.2. Crack Path Stability Under Pure Mode-I Loading

8.3. Second Order Theory for Crack Kinking and Turning

8.4. Criteria for Fracture in Anisotropic Materials

8.5. Crack Growth Under Fatigue Loading

8.1. Maximum Hoop Stress Theory. Maximum Energy Release Rate Criterion
The maximum circumferential, or hoop, stress theory postulates that a crack will grow in the direction, [image: image839.png]


, of maximum hoop stress,[image: image841.png]Ogg



, when
[image: image843.png]VT 09(1,0 *) = Const



.
Assuming that the constant is the same for mixed-mode loading as for pure Mode-I loading, from the Mode-I criterion [image: image845.png]K, = K¢



, the mixed-mode criterion can be written as
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                                              (8.1)

The directional criterion is that the crack will grow in the direction θ∗that satisfies
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                                         (8.2)

Combining Eqs. (3.7) and (3.19) and re-arranging, the hoop stress can be written as
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                  (8.3)

Substituting Eq. (8.3) into Eqs. (8.1) and (8.2) the direction of crack growth and the envelope of failure, expressed in terms of ([image: image853.png]K;/K;c, K /Kic



) can be determined. The results are plotted in Fig. 8.1.
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Fig. 8.1. (a) Angle of crack propagation predicted by maximum hoop stress theory versus load application angle. (b) Failure envelope predicted by maximum hoop stress theory
The theory predicts that under pure Mode-II loading the crack will grow at an angle of θ =−70.6 deg at a stress intensity factor of KII = 0.87KIC. Experimental data for kink angles and mixed-mode fracture toughness are taken from [4]. Theory predicts kink angles well and provides a lower bound to the mixed-mode fracture toughness envelope.
Comparison of this theory with experimental results shows that the maximum hoop stress theory predicts the angle of crack growth well but somewhat underestimates the envelope of failure. Nonetheless, at least for crack growth angle the maximum hoop stress theory is quite accurate and is easily implemented in fracture simulations.

In elementary mechanics of materials one learns that brittle fracture will occur along the plane of maximum tensile stress. This criterion is in fact the same as the maximum hoop stress theory. Why then, is the relation between [image: image857.png]


 and [image: image859.png]


 not a straight line? Or stated another way, why under pure Mode-II loading, where the direction of maximum principal stress is 45 deg to the crack line, does the crack grow at [image: image861.png]6 = —706



 deg and not − 45 deg? The answer is that the presence of the crack disturbs the stress field, hence changing the directions of maximum principal stress. It is interesting to note however, that the path of the crack will evolve to lie along the plane of maximum principal stress. To demonstrate this a numerical (finite element) calculation was performed of a crack in a plate under pure shear (pure Mode-II) loading. Using the maximum hoop stress criterion the tip of the crack is moved ahead in small increments. The result, shown in Fig. 8.2 shows that the crack initially kinks at − 70.6 deg, but then gently turns and grows at − 45 deg.

[image: image862.png]



Fig. 8.2. Computational simulation of crack growth. Initial crack (straight line in figure) is under pure Mode-II loading. Crack path evolves to be orthogonal to the maximum far-field tensile stress. 
Maximum energy release rate criterion
The maximum energy release rate criterion states that the crack will propagate so as to maximize the energy release. Since,
[image: image863.png]



this criterion is equivalent to saying that the crack grows so as to minimize the potential energy of the body, corresponding to the thermodynamic idea that equilibrium systems seek their local energy minima. In principal this criterion can be applied in 3D and to crack surfaces of arbitrary shape.

Wu studied this problem for 2D cracks under Mode-I,-II loading. He considers a straight crack that extends with a kink of length
and angle θ from the pre-existing crack tip. The criterion can be stated as the crack will kink at the angle θ∗such that
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                                          (8.4)

where [image: image871.png]G(6) = lim,_, 2 (T — ), and 1,



is the potential energy for the kinked (or“z-shaped”) crack and Π is the potential energy for the original crack. [image: image873.png]G(6



) cannot be calculated in closed-form, however an excellent approximation can be obtained.

The results show that the kink angle predicted by the energy release rate and hoop stress criteria are quite similar. For example in pure Mode-II loading the energy release rate criterion predicts that [image: image875.png]8 = —756°



 and that fracture occurs when
[image: image877.png]K,; = 0.817K,



.

8.2. Crack Path Stability Under Pure Mode-I Loading
All of the above criteria predict that a crack under pure Mode-I loading will continue to propagate straight ahead. However what would happen if, for example a crack were to grow under a far field stress, with respect to the coordinate system in Fig. 7.9, of 
[image: image879.png]01, =2,0,,=1,0,,=0



.
In this case [image: image881.png]\Ta



 and [image: image883.png]


 and the above theories predict that the crack will grow straight ahead, i.e. in the x1 direction. 
However, the maximum tensile stress away from the crack is not in the [image: image885.png]


 direction, but in the x2 direction. So perhaps the crack would rather grow in the [image: image887.png]


 direction so that the material fractures on the plane of maximum tensile stress.

The above brings up the question of crack-path stability. This problem can be analyzed by considering a semi-infinite crack in a 2D stress field. If there is a kink at the crack tip, will the crack return to its original path or will the crack turn away further from its original path?

Cotterell and Rice developed a first order method to calculate the stress intensity factors at the tip of a slightly curved or kinked crack and applied it to predict the stability of crack paths. For a semi-infinite crack with an extension of length l and path [image: image889.png]y = A(x)



, see Fig. 8.3, 
[image: image890.png]crack path y=A(x) —





Fig. 8.3. Path of crack growth and dependence on T stress parallel to the main crack (η = 2√2T/kI , θ0 = 0.2)
they show that the stress intensity factors for the extended crack are
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where an [image: image894.png](x,y)



 coordinate system is placed at the tip of the pre-existing crack, Fig. 8.3, and [image: image896.png]


 and [image: image898.png]


 are the tractions on the new crack line necessary to remove the stresses that exist prior to crack extension, i.e. when the crack tip is at [image: image900.png](x,y) = (0,0)



. From Eqs. (3.7) and (3.19) (including the constant stress term) the stress field on the x-axis is
[image: image901.png]
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                                          (8.6)

where [image: image906.png]x >0



, [image: image908.png]ki Ky



 are the stress intensity factors for the original crack tip and T is the constant stress term in Eq. (3.7) [image: image910.png](T = 44,)



. To first order in [image: image912.png]


, the tractions are
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                     (8.7)

Solving for [image: image917.png]


 and imposing the criterion that the crack propagates along a path that holds [image: image919.png]


 results in an integral equation for the path

[image: image921.png]1 _Ar(x)

b =2 (D~ Ly







                                     (8.8)

where [image: image923.png]8, = —2ky/k;



 and [image: image925.png]n = 2V2T/k;



 is a normalized T stress with units of [image: image927.png]


. The solution of this equation is
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             (8.9)

One can interpret [image: image931.png]


 as the initial angle of crack growth.

As an example, the path for a crack with [image: image933.png]0.2



 is shown in Fig. 8.3 for [image: image935.png]{-4,0,1}



. In the case [image: image937.png]n =—4(T < 0)



, the crack turns back towards its initial path. For [image: image939.png]n=1(T > 0)



, the crack turns away from its original path. For [image: image941.png]n =0,(T=0)



, the crack continues on a straight the line in the direction of its perturbation.

The stability of a straight crack under Mode-I loading can be deduced from the above analysis. Suppose that the crack has a slight kink or that the loads are not perfectly aligned orthogonal to the crack. In this case [image: image943.png]


 will differ slightly from zero and hence
[image: image945.png]8, # 0



.
If [image: image947.png]T >0



 the path will deviate, from straight. However, if [image: image949.png]T <0



, the crack will turn back. In addition, the rate of deviation increases strongly with T/k1. Experimental results on crack paths under biaxial tension are in agreement with this prediction.

As an additional illustration of the effect of T stress on crack path stability consider an initially tilted crack under biaxial tension, Fig. 8.4. 
[image: image950.png]



Fig. 8.4. Initially tilted crack under biaxial tension. Path shown for different ratios of σ22 to σ11
The crack path is computed using a series of finite element simulations in which the crack is incremented by a small amount according to the maximum hoop stress theory. With negative T stress the crack evolves to a horizontal path. When [image: image952.png]


 the crack path is neutral, i.e. it continues along the original path. For [image: image954.png]T >0



 the crack path diverges and eventually will evolve to a vertical path, orthogonal to the direction of maximum tensile stress. Note that compression parallel to the crack stabilizes the crack path. This result can be exploited in experiments where one may wish to constrain the crack path.

A visually compelling illustration of crack path stability is the transition of cracks in glass under thermal stresses from straight to sinusoidal paths. Glass slides with a small prenotch were heated and then gradually immersed from one end into a water bath. As the temperature difference and speed at which the slides were immersed in the water were varied, the crack pattern transitions from straight to curved as shown in Fig. 8.5. 
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Fig. 8.5. As a heated glass slide is cooled from the left side the path transitions from straight to curved as the temperature difference increases. Further increases result in branching of the crack
Although the overall stress field is quite complex, a rough explanation for the oscillating crack is biaxial tension created by cooling as the slide is immersed in the water bath.

8.3. Second Order Theory for Crack Kinking and Turning
While the theory above demonstrates the conditions for instability of the crack path it does not predict the initial kink angle, [image: image957.png]


. However, adding a length scale, rc to the maximum hoop stress theory will allow the prediction of an initial kink angle even if [image: image959.png]


. Adding the T stress the hoop stress at a distance [image: image961.png]


 from the crack tip is 
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Applying the criterion (Eq. (8.2)) that the crack will kink at the angle θ∗that maximizes [image: image965.png]Ogs
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Notice the rc value, which is not present in the original, [image: image970.png]1t



 order, formulation of the [image: image972.png]max(ogg)
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First consider the case when [image: image975.png]
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 always occurs at [image: image981.png]6= 0



 thus as predicted by the crack path stability theory the crack will grow straight ahead for [image: image983.png]
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 the solution for the kink angle is
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or
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where [image: image993.png]


is the normalized T stress,
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For [image: image997.png]


 the only solution is [image: image999.png]


. For [image: image1001.png]


there is a bifurcation and [image: image1003.png]


 increases rapidly as plotted in Fig. 8.6.
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Fig. 8.6. Crack kinking angles predicted by second order maximum hoop stress theory. Kink angles are negative for positive KII/KI ratios
For non-zero values of [image: image1006.png]K. /K;



 the crack kinking angle increases with increasing [image: image1008.png]


and decreases with decreasing [image: image1010.png]


. This change in kink angle with [image: image1012.png]


is not captured by the first order maximum hoop stress theory (equivalent to [image: image1014.png]


).

The application of this theory to finite element simulations of crack growth relies on the ability to determine the T stress for each increment of crack growth and onan experimental calibration of [image: image1016.png]


. Methods for computing T are reviewed in Ref. [1]. Fatigue crack growth Experiments on 2024 aluminum alloy suggest [image: image1018.png]


 mm. Note, however that the presence of plastic deformation very close to the crack tip will change the actual stress fields rendering the above analysis an approximation for elastic-plastic materials.

8.4. Criteria for Fracture in Anisotropic Materials
Anisotropic materials may have fracture roughnesses that vary with crack orientation. Examples include layered materials such as mica or wood that have distinctly weaker bonding between the layers than along the in-plane directions and rolled metals that have slightly different toughnesses in different directions. When the toughness is anisotropic the criteria for fracture and for crack path selection must be modified.

The orientation dependent toughness of a material is defined as [image: image1020.png]G (8)



. This function could be smooth as in the case of rolled metals, or could be nearly constant with very low values only on specific planes as in the case of layered materials. For the maximum energy release rate criterion the fracture criterion is that the crack will grow at angle [image: image1022.png]


when
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Thus, the crack may grow in a direction that is much different than the directions expected based on the loading. For example, layered materials loaded such that the principal stress is parallel to the layers may nonetheless fracture between the layers.

8.5. Crack Growth Under Fatigue Loading
Under repeated, or cyclic loading, materials can fail due to fatigue at stress levels well below their strength. Fatigue failure generally consists of three stages: 
(I) initiation of a crack, 
(II) propagation of cracks and 
(III) final failure. 
The physical mechanisms for these stages will depend on the material and environmental conditions at hand. However in all cases, stage I will consist of the development of microstructural damage such a microcracks or slip bands. These will grow andeventually coalesce to form a dominant crack. Such a crack could be on the order of 1 mm long at the smallest. A great deal of the fatigue life of a component could be spent in stage I. In stage II the dominant crack grows stably under the application of repeated loads.

In stage III the crack has grown to a length where [image: image1026.png]K > K.



 and the component can fail unstably.

Fatigue life of structures is determined using total life or damage tolerant approaches. The total life approach predicts the fatigue life of a component as a total of the initiation and propagation time until failure. The damage tolerant design assumes that structures have imperfections and flaws from the beginning. Fatigue life is then calculated as the number of cycles needed to grow the crack to a size such that [image: image1028.png]K, > K¢



.

In stage II fatigue a crack will grow at values of [image: image1030.png]


 that are well below [image: image1032.png]


. Thus, since 
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,
the condition for small scale yielding is generally easily met. It is observed (particularly in metals) that the rate of crack growth per cycle of loading, da/dN is a function of the stress intensity factor range,
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.
Results of fatigue fracture tests are generally plotted on a log-log scale and will have a form similar to that sketched in Fig. 8.7. 
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Fig. 8.7. Schematic of fatigue crack growth rate under constant amplitude cyclic loading
The data can be separated into three general regions. Below the threshold value at the left of region 1 there is no crack growth. Just above this threshold the crack grows very slowly. In region 2, at an intermediate value of [image: image1039.png]


 the crack grows at a rate that can be expressed as a power law, 
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where C and n are experimentally determined parameters. Typically [image: image1043.png]2 <n<4



. In region 3, the final stage of growth is marked by accelerating crack growth on the way to instability.

Actual data, Fig. 8.8, for example, show that the rate of fatigue crack growth depends not only on [image: image1045.png]


, but also on the “R-ratio”, defined as [image: image1047.png]Prin/ Prax



. 
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Fig. 8.8. Fatigue crack growth rate for 2024-T3 aluminum alloy, 2.3 mm thick, at three R ratios, R=−1.0, R = 0 and R = 0.7 in moist air

Note that da/dN spans 7 orders of magnitude. 
The dependence on R is due to “crack closure”, or contact, of the crack faces when the load is removed. Crack closure can arise from many sources includingplasticity in the wake of the growing crack, roughness of the fracture surface, oxidation of the new fracture surfaces and other effects.

To understand the mechanics of crack closure, assume for now that the minimum of the cyclic load is zero. When of the load is removed from the component, the crack faces close and can go into compressive contact with each other, partially holding the crack open. This maintains a non-zero [image: image1050.png]


 at the crack tip, as shown in Fig. 8.9. 
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Fig. 8.9. Crack closure effect

In this example load ratio is R = 0. The nominal value of the stress intensity factor amplitude, _K is calculated based on the applied load P . 
However, due to contact behind the crack the actual stress intensity factor does not fall to 0 when P=0, thus the actual, or “effective” stress intensity factor _Keffective is less than the nominal value. As R increases, the minimum value of KI stays the same and thus the reduction in _Keffective due to closure becomes less. Thus, when da/dN is plotted vs. _K, the rate of growth is higher for higher R.WhenR >0.7 the effect of closure largely disappears
Thus in a cycle of loading the amplitude of the stress intensity factorvariation, K is reduced relative to the case in which no closure occurs,reducing the crack growth rate relative to the case in which no closure occurs. As R increases to above approximately 0.7 the cracks do not contact even at the minimum of the load and closure does not occur.

Note as well that environmental conditions can play an important part in fatigue crack growth. For example fatigue tests on aluminum alloys show that the crack growth rate is faster in humid air than in inert environments.

The fracture surfaces of fatigue cracks can often be distinguished by striations as shown in Fig. 8.10. 
[image: image1052.png]



Fig. 8.10. Fatigue striations on surface of a titanium alloy
During loading, the material ahead of the crack is stretched. When the crack grows this stretched material is left in the wake of the crack, leaving behind a striation on the fracture surface.
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Stress Corrosion cracking. Elastic Plastic Fracture: Crack Tip Fields.

Strip Yield (Dugdale) Model

Lecture plan

9.1. Stress Corrosion Cracking

9.2. Exercises

9.3. Elastic Plastic Fracture: Crack Tip Fields

9.4. Minor Notes

9.5. Strip Yield (Dugdale) Model

9.1. Stress Corrosion Cracking
Stress corrosion cracking refers to the time-dependent, slow growth of cracks in corrosive environments under the combined effects of stress and chemical attack. Examples include cracking of aluminum alloys in the presence of salt water, steels in the presence of chlorides or hydrogen and glass in the presence of water. In metals, stress corrosion cracks will typically grow between the grains, but may also grow across grains. 
Stress corrosion cracking is time dependent with the rate of growth depending on both the stress intensity factor and the corrosive environments. For example the rate of crack growth in a high-strength steel alloy (4340) in the presence of water and hydrogen is shown in Fig. 9.1(a).
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Fig. 9.1. Stress corrosion cracking rates for (a) 4340 steel and 
(b) AISA 4335V steel 
The rate of crack growth in high strength AISI 4335V steel in the presence of salt water, hydrogen and hydrogen sulfide is shown in Fig. 9.1(b). 
Typically below a threshold level of [image: image1056.png]


 , no cracking occurs, and as the stress intensity factor reaches [image: image1058.png]


 the crack grows rapidly. In the middle region the rate of growth depends on the availability of hydrogen. However, such plateau regions are not found in allmaterials. Stress corrosion cracking is a significant issue in structures of many types. 

9.2. Exercises 
1. For a straight crack with a kink of infinitesimal length the stress intensity factors at the tip of the kink can be calculated from 


[image: image1059.wmf]II

I

I

k

C

k

C

K

12

11

+

=



[image: image1060.wmf]II

I

II

k

C

k

C

K

11

21

+

=

,



                                      (9.1)
where


[image: image1061.wmf]).

2

/

3

cos

3

2

/

(sin

4

1

),

2

/

3

sin

2

/

(sin

4

1

),

2

/

3

sin

2

/

(sin

4

3

),

2

/

3

cos

2

/

cos

3

(

4

1

22

21

12

11

a

a

a

a

a

a

a

a

+

=

+

=

+

-

=

+

=

C

C

C

C





                            (9.2)
Using the criterion that the crack will grow at an angle that holds 
[image: image1062.wmf]0
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, calculate and plot the kink angle 
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 vs. 
0 ≤ β ≤ 90°
for a crack loaded as shown in Fig. 7.9. 
Compare the predicted kink angle to the results of the maximum hoop stress criterion, Fig. 8.1a. What does the disagreement or agreement between these results tell you? 

Derive Eqs. (9.1), (9.2) given above. 

The integral Eq. (8.8) for the path of a perturbed crack in the presence of a T stress can be solved approximately by expressing the path, 
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Evaluate the constants in this series and plot the results for various values of η. How many terms in the series are needed to approximate the results in Fig. 8.3? 

Consider a DCB specimen loaded with a compliant testing machine. Plot 
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. How soft must the loading system be to induce crack growth instability for a material with a flat R-curve? 

9.3. Elastic Plastic Fracture: Crack Tip Fields
The crack tip stress and strain fields for stationary and growting cracks in elastic-plastic materials are calculated here and the results used to gain insight into ductile fracture criteria such as the R-curve. 
The size of the plastic zone ahead of the crack is estimated using several models. Knowing the size of the plastic zone relative to the component dimensions is an important step in determining whether to us linear elastic fracture mechanics or elastic-plastic fracture mechanics for a fracture prediction. Effects of large scale yielding are explored through slip line solutions. 

9.4. Minor Notes

Interpreted in the narrowest sense, linear elastic fracture is applicable only to materials that fail in a completely brittle manner. However, virtually all structures or components are made of materials with at least some ductility. Just think of how fragile the man-made world would otherwise be! As discussed, small scale yielding may be invoked to relax the restriction to brittle materials in the many practical applications in which materials undergo small amounts of deformation prior to failure. In this chapter the crack tip fields, energy flows, computational approaches and other considerations of fracture in ductile materials will be discussed. This will provide not only the details of the crack tip fields but will also help us to understand the limitations of the small scale yielding assumption and to understand crack growth resistance curves, temperature dependence of fracture toughness and differences between observed toughness in thin and thick sheets of metal. 

The analyses given here will be in the context of small strain, classical plasticity theory. Although not the most general approach to the study of ductile materials, classical plasticity serves as a good starting point for understanding ductile fracture. 

9.5. Strip Yield (Dugdale) Model
We will start the discussion not with a problem in elastic plastic fracture but with the strip yield model, an elastic fracture problem. Although this model was developed specifically to model fracture of thin, metal sheets, it has been adapted as a prototypical ductile fracture model that yields important scaling relations in elastic plastic fracture and one that illuminates the limitations to small scale yielding. 

In the strip yield model a finite crack of length 2a is loaded in tension as shown in Fig. 9.2. It is assumed that the material deforms plastically along very thin zones of length s extending out from the tips of the crack. Inside these zones the stress is limited by the uniaxial yield stress of the material, 
[image: image1069.wmf]0
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, quenching the crack tip stress singularities. This model will apply best to thin sheets of elastic-perfectly plastic materials, i.e. materials that yield with little or no strain hardening. In particular the model is a good approximation for materials exhibiting Lüder’s bands. Lüder’s bands are regions of locally high deformation that occur in the plastic deformation of materials that contain upper and lower yield points. In such materials, during a uniaxial stress-strain test the stress must first exceed a certain level prior to plastic deformation and then drops down to a steady, lower level as plastic deformation continues. 

The problem formulation is a follows: Determine the length s of the yield zones so that the stress is always finite. In doing so we will also determine the stress fields and “crack opening displacement”, or COD. The COD is the displacement at 
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The boundary conditions for this problem are: As
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A superposition approach can be used for the solution of this problem. The original problem is considered as the superposition of three problems: 
(i) A crack of length 2(a + s) loaded in tension, 
(ii) a crack of length 2(a + s) with closing tractions 
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 and 
(iii) a crack with opening tractions over 
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, Fig. 9.2. 
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Fig. 9.2. Crack of length 2a in infinite plate with tensile loading of 
[image: image1081.wmf]¥

=

s

s

22

 and strip yield zone with yield stress 
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 of lengths at each crack tip

Yield zone problem can be solved by superposition of the solutions of the three problems sketched.
The goal is to determine the value of s that makes the stress intensity factor of the combined problem equal to zero, hence ensuring that there are no stress singularities in the combined problem, i.e. that the stress is always finite. The total stress intensity factor is 
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The solution to problem (i) of the superposition is 
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The solution to problem (ii) of the superposition is
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To find the length s of the yield zone we add the stress intensity factors and solve for 
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The resulting stress field ahead of the crack, sketched in Fig. 9.3 may be calculated by solving for φ for all three problems and using 
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Fig. 7.1 Crack of length 2a in infinite plate with tensile loading of 2> = 0 and strip yield zone
with yield stress g of length s at each crack tip. Yield zone problem can be solved by superposition
of the solutions of the three problems sketched

Fig. 7.2 Stress ahead of the
crack tip is finite due to strip
yield zone

v

and letting v = a and u =
w2402

Using the identity tan'% = sin~!

V(@+572—a® we have

. ats . | a
K =20y ——sin “H_S. (7.1)

To find the length s of the yield zone we add the stress intensity factors and solve
for K7 = 0, resulting in
s=asecE _g. (7.2)
02
The resulting stress field ahead of the crack, sketched in Fig. may be calculated
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i i 09:57
W S H = O v 5CCoudy ~G@ene o0, B





Fig. 9.3. Stress ahead of the crack tip is finite due to strip yield zone

Dugdale [1] performed experiments in which sheets of steel containing center and edge cracks were loaded in tension. The plastic zone lengths were measured experimentally (by optical observation) and are compared to the theoretical results in Fig. 9.4.
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Fig. 7.3 Results from

Dugdale’s experiments

showing normalized plastic o internal cracks

zone length versus applied : * edge eracks
theory

tension stress

04 06
c./0,

experimentally (by optical observation) and are compared to the theoretical results
in Fig. 7.3. The agreement between the theory and experimental results is excellent,
demonstrating the validity of this theory for predicting plastic zone in thinsheet-of
materials with low strain hardening.

The crack opening displacement is also found by superposition. For thé com-

bination of problems (i) and (ii), from Eq. (2.81) u§ ™" (x;, 04} 2 (6 =
00)555/(a + )% — x7. For problem (iii) u2 must be calculated using Egs. (2.70)
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Fig. 9.4. Results from Dugdale’s experiments showing normalized plastic zone length versus applied tension stress

The agreement between the theory and experimental results is excellent, demonstrating the validity of this theory for predicting plastic zone in thin sheet of materials with low strain hardening. 

The crack opening displacement is also found by superposition. For the combination of problems (i) and (ii), from Eq. (2.81) 
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For problem (iii) 
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The limit of integration is set at a + s so that the crack will be closed, i.e. 
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, integrating the above and putting all the displacements together, for plane stress the crack mouth displacement is 
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Although the crack opening profile of the crack is somewhat complicated to calculate for the finite crack, the opening is more easily computed for the case of a semi-infinite crack under Mode-I loading. The resulting crack profile (normalized) is shown in Fig. 9.5. Note the cusp shape of the crack opening in the yield zone.
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Strip Yield (Dugdale) Model

L
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X/s

Fig. 7.4 Crack opening profile (normalized) for a Dugdale zone at the tip of a semi-infinite crack
under Mode-I loading (sce exercise 1). In this case the tip of the yield zone is located at x; = 0.
‘The crack tip is located at x; /s = — 1. Note the cusp-like shape of the opening in the strip yield
Zzone. This shape is also seen in the solution of the finite crack problem

Fig. 7.5 Path I" for J
contour integral for strip yield
Zzone problem

semi-infinite crack under Mode-I loading using Egs. (5.2) and (5.3), see exercise 1.

The resulting crack profile (normalized) is shown in Fig. 7.4. Note the cusp shape
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Fig. 9.5. Crack opening profile (normalized) for a Dugdale zone at the tip of a semi-infinite crack under Mode-I loading

In this case the tip of the yield zone is located at 
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. The crack tip is located at 
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. Note the cusp-like shape of the opening in the strip yield zone. This shape is also seen in the solution of the finite crack problem.
The J integral may be calculated by shrinking the integration contour, Γ down to the yield zone as shown in Fig. 9.6. 
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Fig. 7.4 Crack opening profile (normalized) for a Dugdale zone at the tip of a semi-infinite crack
under Mode-I loading (sce exercise 1). In this case the tip of the yield zone is located at x; = 0.
The crack tip is located at x; /s Note the cusp-like shape of the opening in the strip yield
Zzone. This shape is also seen in the solution of the finite crack problem

Fig.7.5 Path I" for J
contour integral for strip yield
zone problem

semi-infinite crack under Mode-I loading using Egs. (5.2) and (5.3), see exercise 1.
The resulting crack profile (normalized) is shown in Fig. 7.4. Note the cusp shape
of the crack opening in the yield zone.

The J integral may be calculated by shrinking the integration contour, I” down to
the yield zone as shown in Fig. 7.5. Recall that J = [,.(Wnj —t;u;1)dI". Divide the
contour into sections ") and I"™), plus a vertical segment whose length vanishes
as the contours are shrunk to the yield zone. On '™ ny =0,ny = 1,1, =0, =0
anddI" = —dx;.On '™ ny =0,ny = —1,1, =0,1, = —og and dI" = dx,. Hence
the term f;u; 1 in the J integral is +oqu>, 1, the Wn; term is zero and

ats a
J :f ooul ) (x1)dxi +/ —oou§®) (x1)(~dx)
a a+s
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Fig. 9.6. Path Γ for J contour integral for strip yield zone problem

Recall that 
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An important question in the application of linear elastic fracture mechanics is when does small scale yielding (SSY) apply? To explore this question let us compare lengths of the plastic zone and values of the J integral for the full solution and for SSY. SSY will certainly apply when 
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Under conditions of SSY the concept of stress intensity factors still applies, thus using the result that 
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We see that the relation between J and 
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 in the SSY case is the same as in the purely elastic case. Note the scaling of length, s of the yield, or plastic zone. We will observe the same scaling in more sophisticated models of elastic plastic fracture, i.e. that the size of the plastic zone scales as 
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How high could the load be before SSY is no longer valid? Let us plot the plastic zone length, s and J integral value for the full solution and the SSY case. Figure 9.7 shows that up to approximately 
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 the SSY and full results are quite close. 
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Fig. 9.7. Strip yield zone model. Length of yield zone and values of normalized J integral vs. applied load, 
[image: image1143.wmf]0

/

s

s

¥

 for a finite crack of length 2a in an infinite plate with yield stress 
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At this stress level  s/a ≈ 0.2. Thus SSY is valid when the size of the plastic zone is less than approximately 20% of the crack length. More generally SSY is applicable when the plastic zone is a fraction either of the crack length, or, in a finite body, of the remaining ligament length, the distance from the crack tip to the nearest free surface. These estimates can be taken as rules of thumb for the limits of validity of SSY. 

Fracture in ductile materials may often have more to do with the accumulation of strain than of the attainment of high stresses. Thus one fracture criterion that could be used would be to postulate that the crack will grow with the crack tip opening displacement (CTOD) exceeds a critical value, i.e. 
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 is a critical value, representing the maximum accumulation of strains that can occur at the crack tip prior to failure. Since 
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Slip Line Solutions for Rigid Plastic Material. Plane-Strain, Semi-Infinite Crack
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10.1. Slip Line Solutions for Rigid Plastic Material. Introduction to Plane Strain Slip Line Theory

10.2. Plane-Strain, Semi-Infinite Crack. Plane-Stress, Semi-Infinite Crack

10.3. Large Scale Yielding (LSY) Example

10.4. SSY Plastic Zone Size and Shape

10.5. CTOD-J Relationship

10.1. Slip Line Solutions for Rigid Plastic Material. Introduction to Plane Strain Slip Line Theory
The slip line theory is useful for the construction of solutions of simple problems involving perfectly plastic materials. The slip line solutions for fracture problems will reveal the basic structure of the crack tip stress fields and provide limits on the crack tip normal (
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) and hydrostatic (
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) stresses. 
These stresses will be a multiple of the flow stress. Higher crack tip stresses occur when the material near the crack tip is highly “constrained” such as in plane strain where no contraction in the direction parallel to the crack line is allowed. We will discuss only the plane strain theory as it is simpler than the plane stress theory. 

In plane strain slip line theory is assumed that 
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due to the plane strain constraint. It is assumed that the plastic strains are much larger than the elastic strains. 

Using the von-Mises yield condition, the plane strain constraint results in 
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The yield condition can be written as 
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(10.1)
where 
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 is the flow stress in pure shear. In terms of the Mohr’s circle the yield condition be represented as a circle of radius τ0 centered on the mean stress, 
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 be the principal directions, see Fig. 10.1. 
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the crack tip normal (62) and hydrostatic (o) stresses. These stresses will be a
multiple of the flow stress. Higher crack tip stresses occur when the material near
the crack tip is highly “constrained” such as in plane strain where no contraction
in the direction parallel to the crack line is allowed. We will discuss only the plane
strain theory as it is simpler than the plane stress theory.

In plane strain slip line theory is assumed that y11, y22 and y12 are the, only
non-zero strains. The stresses oy and o33 are functions of x1, x> and o3 =0. The
in-plane displa S v = g (x1. x2) and v3 = 0 due to the plane strain con:
straint. It is assumed that the plastic strains are much larger than the elastic strains

Using the von-Mises yield condition, the plane strain constraint results in o33
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15.04.2023 %

-3°C Cloudy A @ 4) = ENG





Fig. 10.1. Basis vectors and stresses in principal axes, in axes of maximum shear stress and in 
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The stress field is thus defined by the 
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 basis vectors changes from point to point in the field, but one can consider a network of orthogonal α and β lines that give the directions of 
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 . Along these lines it can be shown that 
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Relations between the velocity fields can be derived as well, but we will concern ourselves here only with the stress fields. 

To understand how the slip line fields work consider the following very simple example. Assume that a block of material is loaded in compression with
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as shown in Fig. 10.2(a). 
[image: image1186.png]@ 1_Alan_T. Zehnder Fracture_Mec X =r

C @ oaiin | C:/Users/zhane/Downloads/1_Alan_T._Zehnder_Fracture_Mechanics_(Lecture_Note(BookFi)%20(5).pdf

YouTube B¥ Maps By Translaste @ Trasras @ opmsi / Mpc

= 1_Alan_T._Zehnder_Fracture_Mechanics_(Lecture_Note(BookF.. 181 /234 — 8% + =3 o ¥y &

Follow the f line from region I into region L. Along this line & + 2704
In region I this value . In region 11T
o(1+7). Apply
0in region I1I.

<% 3°C Cloudy A~ @ ¢ = ENG




   [image: image1187.png]@ 1_Alan_T. Zehnder Fracture_Mec X =r

C @ oaiin | C:/Users/zhane/Downloads/1_Alan_T._Zehnder_Fracture_Mechanics_(Lecture_Note(BookFi)%20(5).pdf

YouTube B¥ Maps By Translaste @ Trasras @ opmsi / Mpc

= 1_Alan_T._Zehnder_Fracture_Mechanics_(Lecture_Note(BookF.. 181 /234 — 8% + =3 o ¥y &

Follow the f line from region I into region L. Along this line & + 2704
In region I this value . In region 11T
o(1+7). Apply
0in region I1I.

<% 3°C Cloudy A~ @ ¢ = ENG





Fig. 10.2. (a) Slip line field in the case of 
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(b) General network of α and β slip lines
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 directions are also the principal stress directions. Knowing that the α direction is found by a −45° rotation from the direction of maximum principal stress, x1 direction in this case, we know that eα is as shown in Fig. 10.2(a) and thus 
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. The α and β lines form a network at ±45°. 

The geometry will not always be so simple, so a few rules are in order. 
(1) Consider the α and β lines shown in Fig. 10.2(b). It can be shown that 
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(2) The change in 
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(3) If one 
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(4) If the 
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 lines are both straight, then the stress is constant (as in the example). 
(5) The stress is constant along a straight 
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 or 
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 line. 

10.2. Plane-Strain, Semi-Infinite Crack. Plane-Stress, Semi-Infinite Crack
Consider a semi-infinite crack under tensile loading. Boundary conditions on the crack faces are 
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. The stress field (Prandtl solution) has three sectors, consisting of constant stress regions ahead of (region III) and behind the crack (region I) and a centered fan (region II), see Fig. 10.3. 
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Fig. 10.3. Prandtl slip line field for plane strain crack in rigid plastic material. Stress solution from HRR as n → 0 field agrees with slip line field
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in region I.

Follow the β line from region I into region III. Along this line
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In region I this value is
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Applying Eqs. (10.2) the stresses are then
[image: image1229.png]



in region III. 

In the centered fan, region II,
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where θ is the angle of a material point with respect to the 
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 axis. Using the result that
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Applying Eqs. (10.2) the stresses are
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in region II. 
The stresses are plotted in Fig. 10.4. 
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7.6 Mode-I Crack in Elastic-Plastic Materials
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the tensile and hydrostatic stresses are considerably elevated above the uniaxial ten-
sile values due to the “constraint” imposed by the plane strain (y33 = 0) and by
the constraint imposed by the surrounding material that does not allow significant
contraction of material in the x; direction ahead of the crack tip.

7.6.2.3 Plane-Stress, Semi-infinite Crack

The analysis of slip line fields in plane stress is somewhat more complex, thus only
the results will be quoted here. In plane stress, ahead of the crack tip'o;'= 279 =
1.1560, 011 = 79 = 0.577 and oy = 379 = 1.709. Thus in comparison to plane
strain_the relative lack of constraint i e 23 is nof restricted hence m22 =0 resnlts
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Fig. 10.4. Angular distribution of stresses for the Prandtl slip line field ahead of a tensile crack in a perfectly plastic material

Let us probe these results. Under the von-Mises yield criterion the yield stress in shear, 
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. Thus in plane strain the tensile and hydrostatic stresses are considerably elevated above the uniaxial tensile values due to the “constraint” imposed by the plane strain 
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 and by the constraint imposed by the surrounding material that does not allow significant contraction of material in the 
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 direction ahead of the crack tip. 

Plane-stress, semi-infinite crack 
The analysis of slip line fields in plane stress is somewhat more complex, thus only the results will be quoted here. In plane stress, ahead of the crack tip 
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. Thus in comparison to plane strain, the relative lack of constraint, i.e. 
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 is not restricted, hence 
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, results in much lower stress values at the crack tip. 

10.3. Large Scale Yielding (LSY) Example
If SSY conditions are no longer maintained and the plastic zone stretches across a significant fraction of the remaining ligament then “large scale yielding” or LSY conditions prevail. In LSY the constraint can change considerably, modifying the crack tip fields relative to the SSY result above rendering the concept of autonomy to be inapplicable. Consider the center crack panel shown in Fig. 10.5 loaded to its limit load, i.e. the plastic zone stretches across the entire uncracked ligament and the applied load can no longer be increased. 
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170 7 Elastic Plastic Fracture: Crack Tip Fields
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As the above simple example shows the stress and strain under LSY conditions
can be much different from the SSY fields and can be strongly configuration (i.e.
center cracked plate, bar in bending [11], edge cracked plate) dependent. Under
such conditions autonomy is not expected to be valid and fracture toughness values,
e.g. Jc, measured in a laboratory test configuration may not be valid for a LSY
application to a different configuration.

7.6.4 SSY Plastic Zone Size and Shape

Fundamental to the understanding of elastic-plastic fracture and to the analysis of
the limitations of the SSY approach is the determination of the size and shape of the
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Fig. 10.5. Center cracked panel at limit load. Ahead of the crack 
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. Material in yield zones deforms towards the center of the panel as the plate is stretched

A slip line field can be constructed consisting of constant stress regions with 
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 ahead of the crack tip. In the plastic regions the material is free to strain by moving towards the center of the plate. Strain concentrates along the boundary of the yield and elastic zones. The reduction in constraint results in a large reduction in the tensile and hydrostatic stress ahead of the crack. 

As the above simple example shows the stress and strain under LSY conditions can be much different from the SSY fields and can be strongly configuration (i.e. center cracked plate, bar in bending, edge cracked plate) dependent. Under such conditions autonomy is not expected to be valid and fracture toughness values, e.g. 
[image: image1258.wmf],
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 measured in a laboratory test configuration may not be valid for a LSY application to a different configuration. 

10.4. SSY Plastic Zone Size and Shape 

Fundamental to the understanding of elastic-plastic fracture and to the analysis of the limitations of the SSY approach is the determination of the size and shape of the crack tip plastic zone. We have already seen that in LSY the size may extend across the entire uncracked ligament. Furthermore the shape and distribution of plastic strain within the plastic zone can be highly configuration dependent. Let us concentrate on 2D cracks under SSY conditions in plane stress and plane strain. 

Define rp as the extent of the plastic zone directly ahead of the crack, i.e. along θ = 0. We know from the Dugdale model and from the Mode-III solution that rp will scale as 
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. However the value of c must be determined for different levels of hardening for plane stress and plane strain. It does not suffice to simply take the Williams 
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 field and substitute it into the yield condition, doing so will underestimate the plastic zone, however one can approximate the shape of the plastic zone by such an analysis. Using the von-Mises condition estimates for the plastic zone shapes for SSY for 
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 are shown in Fig. 10.6. 
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7.6 Mode-I Crack in Elastic-Plastic Materials
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Fig. 10.6. Shapes of the plane stress and plane strain plastic zones estimated by plugging the 
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 field into the von-Mises yield criterion. Actual SSY plastic zone shapes and sizes will depend on n, T, and ν
Define 
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 to be the extent of the plastic zone directly ahead of the crack tip. Assume that for a non-hardening material the stress ahead of the crack is as shown in Fig. 10.7 consisting of a yielded region with 
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Fig. 10.7. Schematic of stress ahead of crack in elastic-plastic non-hardening material

The elastic field outside the plastic zone is a 
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(10.4)
For plane stress the slip line field suggests 
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. However considering the effects of crack tip blunting the value may be closer to 
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 and making a correction for hardening we have the following estimates for the plastic zone size:
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(10.6)
Note that a small strain (i.e. no consideration of crack tip blunting) FEM analysis of SSY plane strain fracture in a non-hardening material yields 
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 an almost exact agreement with the rp estimate that would be obtained with 
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. A SSY FEM analysis of plane stress yields 
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 for n = (5, 9,∞) respectively, in close agreement with Eq. (10.5). 

10.5. CTOD-J Relationship 

The crack tip opening displacement, 
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 can be measured experimentally and the attainment of a critical value of 
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 may under certain conditions be useful as a fracture criterion. There are a number of definitions of 
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 . Let us define 
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 as the opening across the crack where ±45° lines from the crack tip intercept the crack surfaces, see Fig. 10.8. 
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Fig. 727 Definition of 57
for elastic-plastic materials

the following estimates for the plastic zone size:

n—1\1/K;\*
”’:(»14-1);(7(.) plane stress, (7.69)

n—1\ 1 (K\? :
=51 ) 3e (n ) plane stain. (7.70)

Note that a small strain (i.e. no consideration of crack tip blunting) FEM
analysis of SSY plane strain fracture in a non-hardening material yields r, ~
0.036(K/00)> [13] an almost exact agreement with the r,, estimate that would
be obtained with 7 =2.97. A SSY FEM analysis of plane stress [14] yields
rp=(0.22,0.25,0.28)(K /00)* for n = (5,9, 00) respectively, in close agreement
with Eq. (7.69).
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Fig. 10.8. Definition of 
[image: image1295.wmf]T

d

 for elastic-plastic materials 
In the Dugdale model we found that the crack tip opening displacement 
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 was related to J by 
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. A similar expression was found for the anti-plane shear crack. Analyses of the HRR field and finite element studies exploring the 
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 relationship show that in SSY 
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(10.7)
where 
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 is a constant dependent on n and on whether we have plane strain or plane stress conditions and 
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 is the initial yield stress. The constant is also weakly dependent on the relative strength of the material, expressed as 
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. Values of 
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 are tabulated in Table 10.1. Computed crack opening profiles are plotted in Fig. 10.9 for n = 1, 3, 13, ∞. 
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Fig. 10.9. Plane strain crack opening computed from FEM analysis of SSY problem

As hardening reduces the crack opening profile assumes a blunted shape. 

In LSY the relation between 
[image: image1305.wmf]T

d

 and J is dependent on the configuration and on the extent of yielding. For example for n = 10, for a fully yielded, cracked bend specimen (see Table 10.1) 
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 and decreases as the loading continues. 
Table 10.1. Values of dn computed using FEM with σ0/E = 0.002
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0.20
0.32
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0.65
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0.19
0.38
0.67
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For a center cracked plate with n = 10, dn ≈ 0.45–0.60 and increases as loading continues. This is another example in which the LSY fields differ from the corresponding SSY values.
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